
An Introduction to
Programming though C++

Bernard L. Menezes

About These Slides

• Based on Chapter 25 of the book

An Introduction to Programming Through C++

by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade

Categories and subcategories of
objects

• Programs often have to deal with categories of objects,
with some category itself containing subcategories.

• Example 1:
– Category: Bank accounts
– Subcategories: Savings accounts, current accounts.
– Instances: specific accounts, e.g. my account

• Example 2:
– Category: Geometric Shapes
– Subcategories: Rectangles, Circles
– Subcategory of Rectangles: Squares
– Instances: specific shapes, e.g. circle with center (10,20) and

radius 5.

Should categories/subcategories be
represented in programming?

• Natural to make Category = type/class.
– Subcategory = type/class?

• Suppose we make subcategories also types.
– Current accounts and Savings accounts will both have data

member balance, and functions members deposit and
withdraw.

– The deposit function may have the same code in current
accounts and savings accounts, but the withdraw function in
current accounts may permit some overdraft, i.e. withdrawing
more money than you have in your account.

• Key question: Can we give the common code just once?
– Generally it is not desirable to replicate code, if the similarity

is not accidental.

Classes and subclasses

• C++ allows you to define subclasses of any class.
• If A is a subclass of B, then B is said to be the superclass of A.
• Subclass inherits the data and function members defined of its

superclass
– class called Account has data member balance, and member

functions deposit and withdraw.
– CurrentAccount: subclass of Account. balance,deposit,
withdraw will be inherited.

– But we can override implementation of Withdraw.

• One important gain: definitions and code are not duplicated.
• Other gains: later.
• Subclasses of a class can also have subclasses.
• A class can be defined as a subclass of several classes, in

which case it inherits from all its superclasses.

Another motivational
example

• Design a class mTurtle which is like Turtle, but which in addition has a member function
distanceCovered which will return the distance covered by the turtle since its creation.

• Here is an example of a main program that we would like to write.

int main(){
 initCanvas();
 mTurtle m;
 m.forward(100);
 m.right(90);
 m.forward(50);
 cout << m.distanceCovered() << endl;
}

• This program should print 150.

Implementation using
“Composition”

class mTurtleC{
 Turtle t;
 double distance;
public:
 mTurtleC(){ distance = 0; }

 forward(double d){
 distance += d;
 t.forward(d);
 }
 double distanceCovered(){ return distance; }
 void right(double angle){ t.right(angle); }
 void left(double angle){ t.left(angle); }
 // similar forwarding code for other functions
 // allowed on Turtle..
};

Implementation using inheritance

class mTurtleI :
 public Turtle{
 float distance;
public:
 mTurtleI(){
 distance = 0;
 }
 void forward(float d){
 distance += d;
 Turtle::forward(d);
 }
 float distanceCovered(){
 return distance;
 }
};

• The definition of mTurtleI does
not need to have code for right,
this code is inherited from
Turtle. All functions that are
defined for Turtle are inherited.
 Also data members.

• The member function forward is
defined explicitly in mTurtleI.
This definition overrides the
definition that would have been
inherited from Turtle.

• The overridden member function
can be accessed as
Turtle::forward if needed.

• Detailed explanation of
inheritance soon.

Defining a class B as a subclass of
class A

• The general form for this is:

class B : type-of-inheritance A {
 // Body.
 // describes how B is different from A.
}

• Type-of-inheritance: described later.
• B will have all members of A.
• Additional members can be specified in Body.
• The function members in A can be overridden in the
Body.

Accessibility of members
• Definition of members is in

sections named public,
private, protected.

• Members in private sections
can be accessed only in the
current function definition.

• Members in public sections
can be accessed outside of
the class definition, and also
in the subclass definitions.

• Members in protected
sections can be accessed only
in the current definition and
subclass definitions.

• Is the definition of class B
correct as per these rules?

class A{
 int p;
protected:
 int q;
 int getp(){ return p; }
public:
 int r;
 void init(){p=1;q=2;r=3;}
};

class B: public A{
 double s;
public:
 void print(){
 cout << p << q << r << getp();
 }
};

Example (continued)

int main(){
 B b;
 b.init();
 cout << b.p // error: p is private
 << b.q // error: q is protected
 << b.r // OK
 << b.getp()
 // error: getp is protected.
 << endl;
 b.print(); // OK
}
// All errors will be flagged by the compiler.

Action of constructors
• The constructors are not inherited.
• The constructor of a subclass B of class A can be defined as follows

within the body of B:

B(constructor-arguments) :
 call-to-constructor-of-A, initialization-list
{ constructor body }

• Execution order:
– call-to-constructor-of-A. This initializes the members inherited into B

from A.
– Initialization of the members in B ias per the initialization list.
– After that the constructor body is executed.

• call-to-constructor-of-A can be omitted in the code above; if so,
the default constructor of A is called.

Example
class A{
public:
 int p;
 A(int x){ p = x;}
};

class B: public A{
public:
 int q,r;
 B(int x) : A(x), q(x*x){
 r = 10;
 }
};
int main(){
 B b(5);
 cout << b.p << b.q << b.r << endl;
}

// Will print 52510.

Destructors

• The destructor is not inherited.
• The destructor of a class is called,

and it destroys the data members
defined in the class by calling their
destructors.

• After this the destructor of the
superclass is called.

• As always, destructors should not be
called explicitly.

Other operations on subclass
objects

• Assignment operators are also not
inherited.

• As always a default assignment
operator that does member-by-
member copy is defined by the
compiler. You may override this.

Polymorphism: motivation

• Suppose I want to perform operation f
on all objects of a certain category
– Add interest to all accounts
– Draw a set of shapes on the screen

• Natural implementation strategy
– Store the objects in a list L
– Apply f to each element of L

• Is L a list of class associated with the
category or the subcategories?

Types and inheritance

• If object x is of class X which is a subclass of Y,
then x has type both X and Y!

• An object of a subclass can be assigned to a
variable of its superclass. In this case only the
members of the superclass get assigned (unless
the assignment operator is explicitly overridden).

• The address of a subclass object can be stored in
a pointer variable of the superclass. In this case
only the superclass members of the object are
accessible through the pointer by default.

Example

class A{
 void f(){
 cout <<“a”;
 }
};
class B: public A{
 void f(){
 cout <<“b”;
 }
};

int main(){
 A *L[10];
 A a;
 B b;
 L[0] = &a;
 L[1] = &b;
 // allowed!
 for(int i=0;i<2;i++)
 L[i]->f();
 // Will print “aa”.
}

Motivation: Virtual functions

• The example shows that addresses of
objects of a subclass can be stored in
pointers of type superclass.

• When dereferenced, the definitions in the
superclass get used.

• What if we want the definitions in the
subclass to be used? This will often be
convenient.

• Can be done by prefixing the function
definition by the keyword virtual.

Example - 2

class A{
 virtual
 void f(){
 cout <<“a”;
 };
class B: public A{
 void f(){
 cout <<“b”;
 }
};

int main(){
 A *L[10];
 A a;
 B b;
 L[0] = &a;
 L[1] = &b;
 // allowed!
 for(int i=0;i<2;i++)
 L[i]->f();
 // Will print “ab”.
}

Another example
class Flower{
public:
 void whoAmI(){ cout << name() << endl; }
 virtual string name(){ return "Flower"; }
};

class Rose: public Flower{
public:
 string name(){ return "Rose"; }
};

int main(){
 Flower a;
 Rose b;
 a.whoAmI(); // will print “Flower”
 b.whoAmI(); // will print “Rose”
}

Remarks

• A pointer variable that can hold pointers to objects of
a class or its subclasses is said to be polymorphic.

• If a reference can refer to objects of a class or its
subclasses, it is also polymorphic.

• Because of polymorphism, we can consider the type
of an object to be either its class, or its subclass.

• Because of polymorphism, we can effectively place
objects of a class or its subclasses into a single
queue.
– Note: the queue must hold pointers to objects, not objects

themselves.

Abstract classes
• Sometimes we might define a class, which will have subclasses, but of which we

do not expect to create instances.
• Example:

– We may create a class Account and create subclasses of it called currentAccount and
savingsAccount.

– We may not wish to create instances of class Account; it may make sense only to create
instances of classes currentAccount and savingsAccount.

• Classes of which we do not create instances are said to be abstract.
– We can declare a class to be abstract by specifying at least one virtual member function

definition as “= 0;”.

class Account{ virtual double withdraw(double amount) = 0;}

• If we just declare a member function in a class definition, it leaves open the
possibility that its implementation will be specified outside the definition.
– If such a definition is not given outside, then the linker will complain.
– Defining a member function as = 0; tells the linker: the definition of this function will not

be given outside of the body either. Knowing this case the linker will not complain.
– Such a function must be virtual.

Abstract classes - 2
• We can declare a class to be abstract by specifying at least one

virtual member function definition as “= 0;”.

class Account{
virtual double withdraw(double amount) = 0;
}

• “= 0” seems ugly. Why not just omit the implementation?
• Omitting the implementation is interpreted as: “implementation

will be specified outside the definition”.
– If such a definition is not given outside, then the linker will complain.
– Defining a member function as = 0; tells the linker: the definition of

this function will not be given outside of the body either. Knowing this
case the linker will not complain.

– Such a function must be virtual.

Types of Inheritance

• public : What has been discussed so far.
• protected: The public and protected

members of the superclass become
protected members of the subclass.

• private: The public and protected
members become private members of the
subclass.

• Public inheritance is by far most common,
so we will not discuss others in more detail.

Concluding remarks

• Whenever your program deals with objects belonging to
categories and subcategories, use classes and subclasses.

• If a member belongs to several subclasses, consider creating
a superclass of them and declare the member in that
superclass. If the same definition will work for all subclasses,
then put the definition also in the superclass.

• The definition of a member function can be overridden in
subclasses.

• Polymorphism can be obtained using virtual classes. This
enables us to think of an object as belonging to its class, or its
superclass, depending upon our convenience.

• The book gives more examples, and also discusses ideas such
as multiple inheritance and virtual destructors.

• Chapter 26 also gives more examples.

	Slide 1
	About These Slides
	Categories and subcategories of objects
	Should categories/subcategories be represented in programming?
	Classes and subclasses
	Another motivational example
	Implementation using “Composition”
	Implementation using inheritance
	Defining a class B as a subclass of class A
	Accessibility of members
	Example (continued)
	Action of constructors
	Example
	Destructors
	Other operations on subclass objects
	Polymorphism: motivation
	Types and inheritance
	Example
	Motivation: Virtual functions
	Example - 2
	Another example
	Remarks
	Abstract classes
	Abstract classes - 2
	Types of Inheritance
	Concluding remarks

