
CS 101:
Computer Programming and

Utilization

July-Nov 2016

Prof. Bernard L Menezes
(cs101@cse.iitb.ac.in)

Lecture 2: How Computers Work
 (A very high level view)

About These Slides

• Based on Chapter 2 of the book

An Introduction to Programming Through C++

by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade
–First update by Varsha Apte
–Second update by Uday Khedker

A Computer Can Do Many Things

How ?

Control railway switching and signals Weather prediction

Recommendations of what to buy

Perform super-realistic graphics and
movement

How Does A Computer Work

Very simply:

A computer is a large* circuit with parts that

•read numbers from external world (Input)
•store numbers (Storage)
•perform arithmetic on numbers (Processing)
•send numbers to external world (Output)

*How large can large be?
•Physically small: ~1000 mm2

•Logically large: ~109 transistors

How To Use A Computer To
Solve Real-Life Problems?

1.Express the problem as a problem on numbers

2.Think of a solution in terms of the computations need to
be performed, possibly repeatedly and conditionally

= program

3.Feed the
•the data in term of numbers, and
•the program to the computer

4.Get the output on a screen or elsewhere (?)

Digging Deeper - Outline

• Examples of expressing real life problems as numerical
problems
− Picture processing
− Predicting the weather
− Understanding and processing language

• Algorithms and Programs

• High level design of a computer
− Digital circuits
− Parts of a computer
− Stored program, compilation

“What is in this picture?”

Can we ask this question to a computer and get an answer?

Start With Baby Steps

• Black and white picture representation
and comprehension

How to represent black and white
pictures?

• Suppose the picture is 10cm x 10cm

• Divide it into 0.1 mm x 0.1 mm squares

• The number of squares (or pixels) is 1000 x 1000

• If a square is mostly white, represent it by 0

• If a square is mostly black, represent it by 1

• Thus, our picture = 1 million numbers!

Picture Representation and
Reconstruction

Image Recognition
Is this a picture of a vertical line?

• Input:

A sequence of 1 million numbers (0 or 1) representing a
10cm x 10cm black & white picture

• What property does the sequence need to have if it is to
contain a vertical line somewhere?

• All 0s, except for 1s at positions

 i, i+1000, i+2000, i+3000, i+4000,…

for some i

A question about a picture converted into a question
about numbers!

Doing More...

• Better representation if the picture is divided into more
cells

• Pictures with different gray levels: sequence of numbers
indicating degree of darkness

e.g. 1 for light grey, 2 for medium grey, 3 for black
• Pictures with colours: 3 numbers per pixel

each representing intensity of red, blue and green

3 sequences for each : red component, blue
component, green component

More Recognition problems

•Is the picture largely red in colour?

•Is there a square in the picture?

•Are two pictures similar?

•...

Coming back to: Does the picture
contain a Chameleon?

This question will need to be expressed as:

•Does the sequence of numbers representing the picture

contain a subsequence satisfying certain properties?

•Which properties?

− Enormous ingenuity needed to specify.

− Very difficult problem

− Main concern of a deep subject called Computer

Vision

Weather Prediction

• Divide the surface of the earth into small regions (like
pixels)

• For each region i, let pi, ti, hi represent pressure,
temperature, humidity

• Laws of physics will tell us what relationships pi, ti, hi
must satisfy

• We can measure some pressure, humidity, temperature
values, and predict the rest

• Laws of physics also tell us how the values will change
with time

• Smaller the regions, better will be the accuracy (Smaller
the pixels, better will be the picture representation)

Representing A Language Using
Numbers (1)

Define a numeric code for representing letters

•ASCII (American Standard Code for Information Interchange)

is the commonly used code

•Letter ‘a’ = 97 in ASCII, ‘b’ = 98, …

•Uppercase letters, symbols, digits also have codes

•Code also for space character

•Words = sequences of ASCII codes of letters in the word

 ‘computer’ = 99, 111,109,112,117,116,101,114

Representing A Language Using
Numbers (2)

• Sentences/paragraphs = larger sequences

• Does the word “computer” occur in a paragraph?

• Does a certain sequence of numbers occur inside another

sequence of numbers?

A Summary

• Questions about pictures, weather, documents can be
converted to questions about properties of number
sequences

• Finding answers requires solving interesting math
problems

• How will you represent Chess playing as a question on
numbers?

Algorithm

• A precise sequence of mathematical operations using
which a given (INPUT) sequences of numbers is
changed into another (OUTPUT) sequence of numbers

• Allowed mathematical operations: arithmetic operations
• Possible to have conditions selection

 add 1 to x if y is greater than 0
• Repetition is also allowed iteration

 Repeat the following operations n times

Algorithms You Already Know

• The procedures you have learnt in primary school for
arithmetic on numbers with many digits are really
algorithms.

• Primary school algorithms contain all ingredients
described earlier
1. First add the least significant digit of the first number to the least

significant digit of the second number

2. If the sum is greater than 9 then carry the most significant digits

3. Repeat as many times as there are digits

• Algorithms for determining whether a number is prime,
finding the greatest common divisor of two numbers

More About Algorithms

• Early algorithms were invented for computing using
paper and pencil

 eg. Babylonian algorithm for square root
• Many such algorithms are useful even today with

computers
• More general notion of algorithms:

− Precise description of steps needed to perform any
clearly defined task, not necessarily computational

 An Algorithm to cook rice
− s = number of servings
− Put s/2 cups of rice and s cups of water into a pot
− Put on stove and bring the pot contents to boil
− …

Programs

• Algorithms written using a precise notation

• Many different notations/languages possible

• C++ is one such language

• Other languages: C, Java, Python, Basic, Lisp, …

The Hardware
(A very high level glimpse)

• How do we store numbers in hardware?
• How is an instruction expressed in hardware?
• How is it executed?
• How do we output the numbers?

Digital Circuits - Operations

• Building blocks of computers

• Circuits have wires that carry current, and
are at a certain electric potential.

• Digital circuits: interpret electrical
potential/voltage as numbers.

• Simplest convention

− Voltage above 5 volt = number 1

− Voltage between 0 and 0.2 volt =
number 0

− Circuit designed so that voltage will
never be between 0.2 and 5 volt, hence
no ambiguity.

Copyright © 1999-2000 Michael Stutz stutz@dsl.org

An inverter circuit

Digital Circuits - Storage

• Capacitors (like batteries) can
store electrical charges

• Charge stored on a capacitor
may also denote numbers
− Capacitor has low charge

 = value 0 stored on it.

− Capacitor has high charge =
value 1 stored on it.

− Once charge is stored on a
capacitor, it persists. Memory

• Building blocks of DRAMs
(Dynamic Random Access
Memory)

Representing Numbers

• How to represent numbers using this capability?

• Key idea : Binary number system

– Represent all numbers using only 1's and 0's

– Also called "Bits": "Binary digits"

• Details on conversion in next lecture

– For now assume that all decimal numbers can be

converted into binary numbers...i.e. into a sequence

of 1' s and 0's

The Most Celebrated Masters Thesis
Ever (1)

The Most Celebrated Masters Thesis
Ever (2)

The Most Celebrated Masters Thesis
Ever (3)

Representing Numbers

Example: 25 Decimal = 11001 binary

Use 5 capacitors

Store high charge on 1st, 2nd, 5th, and low

charge on 3rd, 4th

To transmit 25 from one part of the computer

to another

Use 5 wires and raise the wires to appropriate

voltages at one end.

Sense the voltages at the other end

Bit = wire/capacitor, depending upon context

Key idea:
Store each bit of the number on a
separate capacitor

Bits, bytes, half-words, words

Bit = 1 capacitor/wire

byte = 8 capacitors/wires

half-word = 16 capacitors/wires

word = 32 capacitors/wires

double word = 64 capacitors/wires

Organization of a computer

Memory

Organized into bytes (groups of
8 capacitors)

Memories of present day
computers contain few
Gigabytes, Giga=230

Each byte in the memory is
assigned a distinct number, or

an address.

In a memory with N bytes, the
addresses go from 0 to N-1

0 0 0
0

1 1 0 1 0

1

2

3

4

5 1 0 1 1 1 1 0 1

6

7

8

9

Memory Ports
Memory has 3 ports: address port,

data port, control port.
Address port consists of log N
wires. (N = number of bytes in

memory)
You can place numbers 0..N-1 on

address port.
Control Port may be just 1 wire.

Wire = 0: Memory to perform read
operation.

Wire = 1: Memory to perform write
operation.

Data port will have w wires, where
w is a multiple of 8. Say w=8m.

Write Operation

Control Port must be set to 1.
If A is placed on the address

port, and D on data port, then
D will be stored in the m bytes

starting at byte A.
(Remember that the data port
had 8m wires, and so m bytes
are available on the data port)

Yes, it is possible to build
circuits that can do this!

Write Operation

0 1

10010

11101000

"Write the number
11101000 (232) into
the location number
10010 (18)

Read Operation

Control Port must be
set to 0.

If A is placed on the
address port, the m

bytes starting at byte A
will appear on the data

port
(Data port has 8m

wires, and so m bytes
will fit on the data port)

Read Operation

1

10010

11101000

"Read from the
location number
10010 (18) 0

Arithmetic Unit

Ports: Input1, Input2, Output,Control
Typically Input1, Input2, Output will consist of w wires, w = size of memory data

port
Control = several wires. Number appearing on the control wires will say what

operation should be performed.
1 cycle after values are placed on Control, the Output will take the commanded

value: sum, product, …

Peripherals: keyboard, screen, disk…

Also have control port
and data port like

organization.
Depending upon value
placed on control port,
the peripheral decides

what to do with the
value on the data port,
or itself places values

on the data port.

data

control

data

control

control

data

Control Unit

Tells other parts of the computer what
to do.

Sends numbers on control wires of each
unit

The control unit decides what to tell
other units by reading a “machine

language program” from the memory of
the computer.

Machine language progam
• Program = Sequence of instructions
• Instruction = sequence of numbers

– First number is OPERATION CODE (OPCODE). This is the code that tells the Control
Unit what OPERATION should do.

– Subsquent numbers are OPERANDS. These are "arguments" to the operation.

OPCO
DE

OPER
AND1

OPER
AND2

OPER
AND3

• operation code 57 might mean:
– Interpret the 3 numbers following 57 as addresses.
– Read the words at the first two addresses and send

them to the Arithmetic unit.
– Command the arithmetic unit to perform multiplication

by sending appropriate number on its control wires.
– Store the result from the arithmetic unit into the word

at the third address

Example

57 100 200 300

Machine language progam
Program = Sequence of instructions

Instruction = sequence of numbers, first of which is an “operation code” which
denotes what operation to perform

Example: operation code 57 might mean:
Interpret the 3 numbers following 57 as addresses.

Read the words at the first two addresses and send them to the Arithmetic unit.
Command the arithmetic unit to perform multiplication by sending appropriate number

on its control wires.
Store the result from the arithmetic unit into the word at the third address

The sequence 57, 100, 200, 300 is an instruction that would cause the product
of the numbers stored in addresses 100, 200 to be stored in the address 300.

The operation codes are defined by the computer designer.
She will assign a different code for each operation that she would like the computer to

perform.
Example: 58 might mean the same thing as above, except that the numbers would be

added.

Control unit operation

Control unit must be told where the machine
language program is in memory.

The control unit then fetches the instructions
constituting the program, interprets the

codes, and performs the required operation.
After one instruction is fetched and

executed, it fetches the next instruction and
repeats the process.

Putting it together

Memory

Arthimetic
Unit

Control Unit

Bus
(network)

0
1
..
10
...

100
....

200

...
300

57 100 200 300

10

1. Control unit is told
the address of the
instruction to fetch
(e.g. instruction is at
location 10)

2. A read operation is
performed on
memory location 10

3. instruction
57 100 200 300
is now "loaded" into
the control unit

57 100 200 300

 289

345

Read Write

1 0

Putting it together

Memory

Arthimetic
Unit

Control Unit

Bus
(network)

0
1
..
10
...

100
....

200

...
300

57 100 200 300

100

1. Now control unit
performs a read
operation of address
100

2. The number 289
is sent to input 1 of
arithmetic unit

289

 289

345

Read Write

1 0

Putting it together

Memory

Arthimetic
Unit

Control Unit

Bus
(network)

0
1
..
10
...

100
....

200

...
300

57 100 200 300

200

1. Now control unit
performs a read
operation of address
200

2. The number 345
is sent to input 2 of
arithmetic unit

345

 289

345

Read Write

1 0

Putting it together

Memory

Arthimetic
Unit

Control Unit

Bus
(network)

0
1
..
10
...

100
....

200

...
300

57 100 200 300

1. Now control unit
instructs the
arithmetic unit to
perform a multiply
operation (the
"control" wires are
set to the operation
code of "multiply")

2. Control unit
stores the product
(289 x 345 = 99705)
temporarily inside its
own unit

 289

345

Read Write

0 0

x

x
99705

99705

Putting it together

Memory

Arthimetic
Unit

Control Unit

Bus
(network)

0
1
..
10
...

100
....

200

...
300

57 100 200 300

300

1. Now control unit
performs a write
operation on address
300

2. The number
99705 is sent on the
data port of memory
and 300 is sent on
the address port of
the memory

99705

 289

345

Read Write

0 1
Instruction
execution is
COMPLETE

99705

Machine language program example

Example:

57, 100, 100, 100
57, 100, 100, 100
This contains two instructions.

Both instructions cause the word at address 100 to be multiplied by
itself and the result stored back in address 100.

After executing the first instruction, address 100 would contain the
square of the number that was present before.

The second operation would repeat the squaring operation.
Thus this is a machine language program to compute the fourth power

of a number.

More complex instructions
Example 1: operation code 59 might mean: “Shut down the computer”

Example 2: operation code 60 might mean:
Interpret the next number in the program as an address

Instead of next executing the instruction following the current one, execute
the instruction starting at this address.

Example 3: operation code 61 might mean:
Interpret the next number in the program as an address.

If the last result produced by the arithmetic unit was 0, then execute the
instruction starting at this address.

If the last result produced by the arithmetic unit was not 0, then execute the
instruction following the current one.

Analogous to the repeat statement of chapter 1.
Using such instructions, we will be able to perform an operation 100s of

times without making our machine language very long.

Machine language programs and C++ programs

On early computers, you would have to write machine
language programs.

Find out what operation you want.
Look up the manual and find its code.

Enter the code into the memory of the computer.
Repeat.

Process is laborious, error-prone.

Modern computers also need machine language programs.
You write C++ program.

A prewritten program, “compiler”, translates your C++ program to a
machine language program.

Another program, “loader”, will load it into the memory and start its
execution.

Concluding Remarks
Key idea 1: use numerical codes to

represent non numerical entities
letters and other symbols: ASCII code

operations to perform on the computer:
Operation codes

Key idea 2: Current/charge/voltage
values in the computer circuits

represent bits (0 or 1).

Concluding Remarks

Memory is organized into bytes. Each byte has an
address.

What the computer does is determined by a
machine language program that must be stored in

the memory.

Computer users do not need to themselves write a
machine language program, but can write a C++
program which is then compiled by a compiler.

	Slide 1
	About These Slides
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	More Recognition problems
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Representing Numbers
	The Most Celebrated Masters Thesis Ever (1)
	The Most Celebrated Masters Thesis Ever (2)
	The Most Celebrated Masters Thesis Ever (3)
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Machine language progam
	Example
	Slide 44
	Slide 45
	Putting it together
	Putting it together
	Putting it together
	Putting it together
	Putting it together
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

