
CS 101:
Computer Programming and

Utilization

July-Nov 2016

Prof. Bernard L Menezes
(cs101@cse.iitb.ac.in)

Lecture 3:
Number Representations, Variables,

Data Types, and Expressions

Representing Numbers

• Digital circuits can store 0's and 1's

• How to represent numbers using this capability?

• Key idea : Binary number system

• Represent all numbers using only 1's and 0's

Number Systems

• Roman system

– new symbols for larger

numbers

– could not represent

larger numbers

• Radix based number systems (e.g. Decimal)

• Revolutionary concept in number representation!

Radix-Based Number Systems

• Key idea: position of a symbol determines it's value!
PLACE VALUE

– How do we determine it's relative position in list of
symbols?

– A Zero symbol needed to shift the position of a symbol

• Number systems with radix r should have r symbols

– The value of a symbol is multiplied by r for each left shift.

– Multiply from right to left by: 1, r, r2, r3
, ... and then add

Decimal Number System

• RADIX is 10. Place-Values: 1, 10,100,1000...

• In the decimal system: 346

− Value of "6" = 6

− Value of "4" = 4 x 10

− Value of "3" = 3 x 10 x 10

Quadral Number System

• RADIX is 4. Place values: 1, 4, 16, 64, 256,...

• Only 4 symbols (digits) needed 0,1,2,3

• 23 in quadral:

– Value of 3 =3

– Value of 2 = 2 x 4

– Value of 23 in quadral = 11 in decimal

• 22130 in quadral=

– 0 + (3 x 4) + (1 x 4 x 4) + (2 x 4 x 4 x 4) + (2 x 4 x 4 x 4
x 4)

 = 668 in decimal

Octal Number Systems

• RADIX is 8. Place Value: 1, 8, 64, 512,....

• 8 digits needed : 0,1,2,3,4,5,6,7

• 23 in octal

– Value of 3 = 3

– Value of 2 = 2 x 8

– Value of 23 in octal = 19 in decimal

• 45171 in octal =

– 1+8*7+8*8*1+8*8*8*5+8*8*8*8*4

 = 19065 in decimal

Binary System

• Radix= 2
• Needs ONLY TWO digits : 0 and 1
• Place-value: powers of two:

• 11 in binary:
– Value of rightmost 1 = 1
– Value of next 1 = 1 x2
– 11 in binary = 3 in decimal

• 110011

= 1x1 + 1 x2 + 0 x 4 + 0 x 8 + 1 x 16 + 1 x 32
= 1 + 2 + 16 + 32= 51 (in decimal)

128 64 32 16 8 4 2 1

128 64 32 16 8 4 2 1

1 1 0 0 1 1

Binary System: Representing Numbers

• Decimal to binary conversion

– Express it as a sum of powers of two

• Example: the number 154 in binary:

– 154 = 128 + 16 + 8 + 2

– 154 = 1 x 27 + 0 x 26 + 0 x 25 + 1 x 24 + 1 x 23 +0 x 22 +
1 x 21 + 0 x 20

– Thus 154 in binary is 10011010

128 64 32 16 8 4 2 1

1 0 0 1 1 0 1 0

Fractions In Binary

• Powers on the right side of the point are negative:

• Binary 0.1 = 0 + 1 x 2-1 = 0.5 in decimal

• In Binary 0.11 = 0x 1 + 1 x 2-1 + 1 x 2-2

= 0.5 + 0.25 = 0.75 in decimal

8 4 2 1 1/2 1/4 1/8 1/16

Representing Non-Negative Numbers

• The number of bits (capacitors/wires) used cannot be chosen
arbitrarily

• Choices allowed: 8, 16, 32, 64

• Example: To store 25 using 32 bits:
− 25 Decimal = 00000000000000000000000000011001

− So store the following charge pattern (H=High, L=Low)

− LLLLLLLLLLLLLLLLLLLLLLLLLLLHHLLH

• Range stored: 0 to 232 – 1. If your numbers are likely to be
larger, then use 64 bits.

• Choose the number of bits depending upon how large you
expect the number to be.

Representing Integers That Can Be
Positive And Negative

• Only byte, half-word, … can be used.

• One of the bits is used to indicate sign

• Sign bit = 0 (low charge/voltage) means positive number,
= 1 means negative number

• To store -25 use
− 10000000000000000000000000011001

− Leftmost bit = sign bit

• Range stored: -(231 – 1) to 231 – 1

• Actual representation used: more complex. Two’s
complement

Representing Real numbers

• Use an analogue of scientific notation:

significand * 10exponent, e.g. 6.022 * 1022

• For us the significand and exponent are in binary

significand * 2exponent

• Single precision: store significand in 24 bits, exponent in 8
bits. Fits in one word!

• Double precision: store significand in 53 bits, exponent in 11
bits. Fits in a double word!

• Actual representation: more complex. “IEEE Floating Point
Standard”

Example

• Let us represent the number 3450 = 3.45 x 103

• First: Convert to binary:
• 3450 = 211+ 210+ 28 + 26+ 25+24 +23 + 21

• Thus 3450 in binary = 110101111010
• 3450 in significand-exponent notation: how?
• 1.10101111010 x 101011

− 10 in binary is 2 in decimal
− 1011 in binary is 11 in decimal, we have to move the

"binary point" 11 places to the right

11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 1 1 1 0 1 0

Example Continued

For computer representation:

• Use 23 bits for magnitude of significand, 1 bit for sign
• Use 7 bits for magnitude of exponent, 1 bit for sign

 01101011110100000000000000001011
• Decimal point is assumed after 2nd bit.

Concluding Remarks

• Key idea 1: use numerical codes to represent non numerical
entities
− letters and other symbols: ASCII code
− operations to perform on the computer: Operation codes

• Key idea 2: Current/charge/voltage values in the computer
circuits represent bits (0 or 1).

• Key idea 3: Larger numbers can be represented using
sequence of bits.
− In a fixed number of bits you can represent numbers in a

fixed range.
− If you dedicate a bit to representing the sign, the range of

representable numbers changes.
− Real numbers are represented approximately. If you want

more precision or greater range, you need to use larger
number of bits.

Outline

• How to store numbers in the memory of a computer

• How to perform arithmetic

• How to read numbers into the memory from the keyboard

• How to print numbers on the screen

• Many programs based on all this

Reserving Memory For Storing
Numbers

Before you store numbers in
the computer's memory, you
must explicitly reserve space
for storing them in the memory
This is done by a variable
declaration statement.
variable: name given to the
space you reserved.
You must also state what kind
of values will be stored in the
variable: data type of the
variable.

0 0 0
0

1 1 0 1 0

1

2

3

4

5 0 0 0 0 0 1 0 1

6

7

8

9Byte#5 reserved for some variable
named, "c", say.

Variable Declaration

A general statement of the form:

data_type_name variable_name;

Creates and declares variables

Earlier example

int noofsides;

int : name of the data type. Short form for integer. Says

reserve space for storing integer values, positive or negative, of

a standard size

Standard size = 32 bits on most computers

noofsides : name given to the reserved space, or the variable

created

Variable Declaration

0

1

2

3

4

5

6

7

8

9

.......

32
bitsint noofsides;

Results in a memory location of size 32 bits being reserved for this
variable. The program will refer to it by the name noofsides

Variable Names: Identifiers

Sequence of one or more letters, digits and the underscore
“_” character
•Should not begin with a digit
•Some words such as int cannot be used as variable
names. Reserved by C++ for its own use
•Case matters. ABC and abc are distinct identifiers

Examples:
•Valid indentifiers: noofsides, telephone_number, x, x123,
third_cousin
•Invalid identifiers: #sides, 3rd_cousin, third cousin

Recommendation: use meaningful names, describing the
purpose for which the variable will be used

Some Other Data Types Of C++

• unsigned int : Used for storing integers which will always be
positive
− 1 word (32 bits) will be allocated
− Ordinary binary representation will be used

• char : Used for storing characters or small integers
− 1 byte will be allocated
− ASCII code of characters is stored

• float : Used for storing real numbers
− 1 word will be allocated
− IEEE FP representation, 8 bits exponent, 24 bits significand

• double : Used for storing real numbers
− 2 words will be allocated
− IEEE FP representation, 11 bits exponent, 53 bits significand

Variable Declarations

•Okay to define several variables in
same statement

•The keyword long : says, I need to
store bigger or more precise
numbers, so give me more than
usual space.

•long unsigned int: Likely 64 bits will
be allocated

•long double: likely 96 bits will be
allocated

unsigned int
telephone_number;

float velocity;

float mass, acceleration;

long unsigned int
crypto_password;

long double
more_precise_vaule;

Variable Initialization

• Initialization - an INITIAL value is
assigned to the variable

the value stored in the variable at the
time of its creation

−Variables i, vx, vy are declared
and are initialized
−2.0e5 is how we write 2.0*105

−‘f’ is a character constant
representing the ASCII value of
the quoted character
−result and weight are declared
but not initialized

int i=0, result;

float vx=1.0,
vy=2.0e5,
weight;

char value = ‘f’;

Const Keyword

const double pi = 3.14;

The keyword const means : value assigned once cannot be

changed

Useful in readability of a program

 area = pi * radius * radius;

reads better than

area = 3.14 * radius * radius;

Reading Values Into Variables (1)

• Can read into several variables one
after another

• If you read into a char type variable,
the ASCII code of the typed character
gets stored

• If you type the character ‘f’, the ASCII
value of ‘f’ will get stored

cin >> noofsides;

cin >> vx >> vy;

char command;

cin >> command;

Reading Values Into Variables (2)

Some rules:

• User expected to type in values consistent with the type of

the variable into which it is to be read

• Whitespaces (i.e. space characters, tabs, newlines) typed by

the user are ignored.

• newline/enter key must be pressed after values are typed

Printing Variables On The Screen

• General form: cout << variable;
• Many values can be printed one after

another
• To print newline, use endl
• Additional text can be printed by

enclosing it in quotes
• This one prints the text Position: ,

then x and y with a comma between
them and a newline after them

• If you print a char variable, then the
content is interpreted as an ASCII
code, and the corresponding
character is printed.
G will be printed.

cout << x;

cout << x << y;

cout <<“Position:" <<

x << “, “ << y <<

endl;

char var = ‘G’;

cout << var;

An Assignment Statement

Used to store results of computation into a variable. Form:
variable_name = expression;
Example:
s = u*t + 0.5 * a * t * t;
Expression : can specify a formula involving constants or
variables, almost as in mathematics

• If variables are specified, their values are used.
• operators must be written explicitly
• multiplication, division have higher precedence than

addition, subtraction
• multiplication, division have same precedence
• addition, subtraction have same precedence
• operators of same precedence will be evaluated left to

right.
• Parentheses can be used with usual meaning

Examples

int x=2, y=3, p=4, q=5, r, s, t;

x = r*s; // disaster. r, s undefined

r = x*y + p*q; // r becomes 2*3 + 4*5 = 26

s = x*(y+p)*q; // s becomes 2*(3+4)*5 = 70

t = x – y + p – q; // equal precedence,

 // so evaluated left to right,

 // t becomes (((2-3)+4)-5 = -2

Arithmetic Between Different Types
Allowed

int x=2, y=3, z, w;

float q=3., r, s;

r = x; // representation changed

 // 2 stored as a float in r "2.0"

z = q; // store with truncation

 // z takes integer value 3

s = x*q; // convert to same type,

 // then multiply

 // Which type?

Evaluating varA op varB
e.g. x*q

• if varA, varB have the same data type: the result will have

same data type

• if varA, varB have different data types: the result will have

more expressive data type

• int/short/unsigned int are less expressive than float/double

• shorter types are less expressive than longer types

	Slide 1
	Representing Numbers
	Number Systems
	Radix-Based Number Systems
	Decimal Number System
	Quadral Number System
	Octal Number Systems
	Binary System
	Binary System: Representing Numbers
	Fractions In Binary
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Example Continued
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Variable Declarations
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

