
CS 101:
Computer Programming and Utilizati

on

JulJul--NovNov 2016 2016

Bernard MenezesBernard Menezes
(cs101@cse.iitb.ac.in)(cs101@cse.iitb.ac.in)

Lecture 5: Lecture 5: Conditional Execution

About These Slides

• Based on Chapter 6 of the book

An Introduction to Programming Through C++

by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade
–First update by Varsha Apte

–Second update by Uday Khedker

Let Us Calculate Income Tax

Write a program to read income and print income tax, using

following rules

•If income ≤ 1,80,000, then tax = 0

•If income is between 180,000 and 500,000 then tax= 10%

of (income - 180,000)

•If income is between 500,000 and 800,000, then tax =

32,000 + 20% of (income – 500,000)

•If income > 800,000, then tax = 92,000 + 30% of (income –

800,000)

Cannot write tax calculation program using what we have

learnt so far

An Even Simpler Problem
• Using the rules given earlier, read in the income of an

individual and print a message indicating whether or not

the individual owes tax

• Even this simpler problem cannot be done using what

we have learned so far

• For completeness, we need
− Sequence of statements
 default
− Repetition of statements
 repeat statement
− Selection of statements
 new statement needed: if statement

Outline

• Basic if statement

• if-else statement

• Most general if statement form

• switch statement

• Computig Logical expressions

Basic IF Statement

Form:

if (condition) consequent

condition: boolean expression

boolean : Should evaluate to true or false

consequent: C++ statement, e.g. assignment

If condition evaluates to true, then the consequent is

executed.

If condition evaluates to false, then consequent is ignored

Conditions

• Simple condition: exp1 relop exp2

relop : relational operator: <, <=, ==, >, >=, !=

less than, less than or equal, equal, greater than, greater

than or equal, not equal

• Condition is considered true if exp1 relates to exp2 as per

the specified relational operator relop

Program for the Simple Problem

main_program {
float income, tax;
cin >> income;
if (income <= 180000)

cout << “No tax owed” << endl;
if (income > 180000)

 cout << “You owe tax” << endl;
}
// Always checks both conditions
// If the first condition is true,
// then you know second must be false (in this case)
,
// and vice versa. Cannot be avoided
// using just the basic if statement

Flowchart

• Pictorial representation of a program

• Statements put inside boxes

• If box C will possibly be executed after box B, then put

an arrow from B to C

• Specially convenient for showing conditional execution,

because there can be more than one next statements

• Diamond shaped boxes are used for condition checks

Flowchart of the IF Statement

Condition

Previous Statement

 Consequent

New Statement

True

False

A More General Form of the IF Stateme
nt

if (condition) consequent else alternate

The condition is first evaluated

If it is true, then consequent is executed

If the condition is false, then alternate is executed

Flowchart of the IF-ELSE statement

Condition

Previous Statement

 Alternate Consequent

True False

New Statement

A Better Program for our Simple Problem

main_program {

float income, tax;

 cin >> income;

if (income <= 180000)

cout << “No tax owed.” << endl;

else

cout << “You owe tax.” << endl;

}

// Only one condition check

// Thus more efficient than previous

Most General Form of the IF-ELSE Stat
ement

if (condition_1) consequent_1

else if (condition_2) consequent_2

…

else if (condition_n) consequent_n

else alternate

Evaluate conditions in order

Some condition true: execute the corresponding
consequent. Do not evaluate subsequent conditions

All conditions false: execute alternate

Flowchart of the General IF-ELSE St
atement (with 3 conditions)

New Statement

Condition 2

 Condition 3

Consequent 1

Consequent 2

Consequent 3 Alternate

True

True

False

False

Previous Statement

 Condition 1
True False

Tax Calculation Program

main_program {

 float tax,income;

cin >> income;

 if (income <= 180000) tax = 0;

 else if (income <= 500000)

 tax = (income – 180000) * 0.1;

 else if (income <= 800000)

 tax = (income – 500000) * 0.2 + 32000;

 else tax = (income – 800000) * 0.3 + 92000;

 cout << tax << endl;

}

Tax Calculation Flowchart

Income<=180000

Income<=500000

Income<=800000

tax = 0;

tax = (income - 18
0000) * 0.1;

tax = 32000 + (inco
me - 320000) * 0.2;

tax = 92000 + (inco
me - 800000) * 0.3;

Read Income

Print Tax

True

True

False

False

False

True

More General Conditions

• condition1 && condition2 : true only if both true

Boolean AND

• condition1 || condition2 : true only if at least one is true

Boolean OR

• ! condition : true if only if condition is false

• Components of general conditions may themselves be

general conditions, e.g.

!((income < 18000) || (income > 500000))

• Exercise: write tax calculation program using general

conditions wherever needed

Remark

The consequent in an if statement can be a block containing s
everal statements. If the condition is true, all statements in
the block are executed, in order

Likewise the alternate

Example: If income is greater than 800000, then both the
statements below get executed

if (income > 800000){

 tax = 92000 + (income – 800000)*0.3;

 cout << “In highest tax bracket.\n”;

}

\n : Newline character. Another way besides endl

Blocks and Scope

• Code inside {} is called a block
• Blocks are associated with repeats,

but you may create them arbitrarily
• You may declare variables inside

any block
• New summing program:
• The variable term is defined close to

where it is used, rather than at the
beginning. This makes the program
more readable

• But the execution of this code is a bit
involved

// The summing program
// written differently

main_program{
int s = 0;

 repeat(10){
 int term;
 cin >> term;
 s = s + term;
 }
 cout << s << endl;
}

How Definitions In A Block Execute

Basic rules

•A variable is created every time control reaches the
declaration

•All variables created in a block are destroyed every time
control reaches the end of the block

•Creating a variable is only notional; the compiler simply
starts using that region of memory from then on

•Likewise destroying a variable is notional

Shadowing And Scope

• Variables defined outside a block can be used inside the

block, if no variable of the same name is declared inside

the block

• If a variable of the same name is defined, then from the

point of declaration to the end of the block, the newly

declared variable gets used

• The new variable is said to shadow the old variable

• The region of the program where a variable declared in a

particular declaration can be used is said to be the scope

of the declaration

Another Example of Block

main_program{

 int x=5;

 cout << x << endl; // prints 5

 {

 cout << x << endl; // prints 5

 int x = 10;

 cout << x << endl; // prints 10

 }

 cout << x << endl; //prints 5

}

Logical Data
• We have seen that we can evaluate conditions, combine

conditions

• Why not allow storing the results (true or false) of such

computations?

• Indeed, C++ has data type bool into which values of

conditions can be stored

• The type bool is named after George Boole, who

formalized the manipulation of logical data

• An int variable can have 232 values, a bool variable can h

ave only two values (true/false)

The Data Type Bool

bool highincome, lowincome;

Declares variables highincome and lowincome of type bool

highincome = (income > 800000);

bool fun = true;

Will set highincome to true if the variable income contains
value larger than 800000

boolean variables which have a value can be used
wherever conditions are expected, e.g.

if (highincome)

 tax = …

Example: Determining If a Number is
Prime

• Program should take as input a number x (an integer >

1)

• Output Number is prime if it is, or number is not prime if i

t is not

• Steps:

– For all numbers 2 to x-1, check whether any one of th

ese is a factor of n

• These are x-2 checks

– If none, then number is prime

Example...Prime

Let's try using the accumulation idiom with a boolean

variable

Be careful of = vs ==

Example...Prime

main_program {

 int x; cin >> x; // read x 4534534536

 int i = 2; //first factor to check;

 bool factorFound = false; // no factor found yet;

 repeat (x-2) {

 factorFound = factorFound || ((x % i) == 0);

 // Remainder is 0 when x is divisible by i

 i++;

 }

if (factorFound) cout << x << " is not prime"

 << endl;

}

Remarks

• Conditional execution makes life interesting

• Master the 3 forms of if

• Exercise: write the tax calculation program without using

the general if and without evaluating conditions

unnecessarily. Hint: use blocks

• You can nest if statements inside each other: some pitfalls

in this are discussed in the book

	CS 101: Computer Programming and Utilization
	About These Slides
	Let Us Calculate Income Tax
	An Even Simpler Problem
	Outline
	Basic IF Statement
	Conditions
	Program for the Simple Problem
	Flowchart
	Flowchart of the IF Statement
	A More General Form of the IF Statement
	Flowchart of the IF-ELSE statement
	A Better Program for our Simple Problem
	Most General Form of the IF-ELSE Statement
	Flowchart of the General IF-ELSE Statement (with 3 conditions)
	Tax Calculation Program
	Tax Calculation Flowchart
	More General Conditions
	Remark
	Blocks and Scope
	How Definitions In A Block Execute
	Shadowing And Scope
	Another Example of Block
	Logical Data
	The Data Type Bool
	Example: Determining If a Number is Prime
	Example...Prime
	Slide 28
	Remarks

