
CS 101:
Computer Programming and

Utilization

JJulul--NovNov 2016 2016

Bernard MenezesBernard Menezes
(cs101@cse.iitb.ac.in)(cs101@cse.iitb.ac.in)

Lecture 6: Lecture 6: General Loops

About These Slides

• Based on Chapter 7 of the book

An Introduction to Programming Through C++

by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade
–First update by Varsha Apte

–Second update by Uday Khedker

The Need of a More General Loop

Read marks of students from the keyboard and print the
average

•Number of students not given explicitly

•If a negative number is entered as marks, then it is a
signal that all marks have been entered

 Examples
− Input: 98 96 -1, Output: 97

− Input: 90 80 70 60 -1, Output: 75

• The repeat statement repeats a fixed number of times.
Not useful

• We need a more general statement

while, do while, or for

Outline

• The while statement

− Some simple examples

− Mark averaging

• The break statement

• The continue statement

• The do while statement

• The for statement

The WHILE Statement

while (condition)

body

next_statement

1. Evaluate the condition

If true, execute body. body can
be a single statement or a block,
in which case all the statements
in the block will be executed

2. Go back and execute from step 1

3. If false, execution of while
statement ends and control goes
to the next statement

The WHILE Statement

while (condition)

body

• The condition must eventually
become false, otherwise the
program will never halt. Not
halting is not acceptable

• If the condition is true originally,
then the value of some variable
used in condition must change
in the execution of body, so that
eventually condition becomes
false

• Each execution of the body =
iteration

WHILE Statement Flowchart

Condition

Body

Previous statement in the program

Next statement in the Program

False

True

A Program That Does Not Halt

main_program{

int x=10;

while(x > 0){

cout << “Iterating” << endl;

}

}

// Will endlessly keep printing

// Not a good program

A Program That Does Halt

main_program{

int x=3;

while(x > 0){

cout << “Iterating” << endl;

x--; // Same as x = x – 1;

}

}

// Will print “Iterating.” 3 times

// Good program (if that is what

// you want)!

Explanation

main_program{

int x=3;

while(x > 0){

cout << “Iterating” <<

endl;

x--;

}

}

• First x is assigned the
value 3

• Condition x > 0 is TRUE

• So body is executed
(prints Iterating)

• AFTER x-- is executed,
the value of x is 2

Explanation

main_program{

int x=3;

while(x > 0){

 cout << “Iterating” <<

endl;

x--;

}

}

• Again the condition is

evaluated. For x with

value 2, condition is still

TRUE

• So execute this

– print iterating

• Decrement x

• Value now is 1

Explanation

main_program{

int x=3;

while(x > 0){

cout << Iterating <<

endl;

x--;

}

}

• Again the condition is

evaluated. For x with

value 1, condition is still

TRUE

• So execute this

– print iterating

• Decrement x

• Value now is 0

Explanation

main_program{

int x=3;

while(x > 0){

cout << Iterating <<

endl;

x--;

}

}

• Again the condition is

evaluated. For x with

value 0, condition is still

FALSE

• So control goes outside

the body of the loop

• Program exits

WHILE vs. REPEAT

Anything you can do using repeat can be done using while

(but not vice-versa)

repeat(n){ any code }

Equivalent to

int i=n;

while(i>0){i--; any code}

This is a simplistic explanation

See file include/simplecpp for a more precise explanation

Mark Averaging

Natural strategy

1.Read the next value

2.If it is negative, then go to step 5, if it is >= 0, continue to

step 3

3.Add the value read to the sum of values read so far, Add

1 to the count of values read so far.

4.Go to step 1

5.Print sum/count

A bit tricky to implement using while

Flowchart Of Mark Averaging vs.
Flowchart Of While

Flowchart of WHILE

Condition

Body

Previous statement in the program

Next statement in the Program

False

True

cin >> nextmark

Start

nextmark>=0

sum = sum + nextmark;
count = count + 1;

Calculate and print average

Flowchart of mark averaging

False

True

Flowchart Of Mark Averaging vs.
Flowchart Of WHILE

• In the flowchart of mark averaging, the first statement to
be repeated is not the condition check

• In the flowchart of while, the first statement to be
repeated, is the condition check

• So we cannot easily express mark averaging using while

Flowchart Of Mark Averaging vs. Flowchart of
WHILE

Start

Original

cin >> nextmark

nextmark>=0

sum = sum + nextmark;
count = count + 1;

False

True

A

B

C

cin >> nextmark

Start

nextmark>=0

sum = sum + nextmark;
count = count + 1;

False

cin >> nextmark A

A

C

B

Modified

A Different Flowchart For Mark Averaging

• Let's label the statements as A (input), C (condition),
and B (accumulation)

• The desired sequence of computation is

A-C-B A-C-B A-C-B ... A-C

• We just rewrite it is

A C-B-A C-B-A C-B-A ... C

• Thus we take input outside of the loop once and then
at the bottom of the loop body

Program

main_program{

 float nextmark, sum = 0;

 int count = 0;

 cin >> nextmark; // A

 while(nextmark >= 0){

 sum += nextmark; count++;

 cin >> nextmark; // copy of A!!

 }

 cout << sum/count << endl;

}

Remarks

• Often, we naturally think of flowcharts in which the
repetition does not begin with a condition check. In such
cases we must make a copy of the code, as we did in
our example

• Also remember that the condition at the beginning of the
while must say under what conditions we should enter
the loop, not when we should get out of the loop. Write
the condition accordingly

• Note that the condition can be specified as true, which is
always true. This may seem puzzling, since it appears
that the loop will never terminate. But this will be useful
soon..

Nested WHILE Statements

We can put one while statement inside another The
execution is as you might expect. Example:

What do you think this will print?

int i=3;
while(i > 0) {

i--;
int j=5;
while(j > 0){

j--;
cout << “A”;

 }
cout << endl;

}

The BREAK Statement

• The break keyword is a statement by itself

• When it is encountered in execution, the execution of

the innermost while statement which contains it is

terminated, and the execution continues from the next

statement following the while statement

Example of BREAK

main_program{

 float nextmark, sum = 0;

 int count = 0;

 while(true){

cin >> nextmark;

if(nextmark < 0)

break;

sum += nextmark;

count++;

}

 cout << sum/count << endl;

}

If break is executed,
control goes here, out of
the loop

Explanation

• In our mark averaging program, we did not want to check
the condition at the beginning of the repeated portion

• The break statement allows us just that!

• So we have specified the loop condition as true, but have
put a break inside

• The statements in the loop will repeatedly execute;
however when a negative number is read, the loop will be
exited immediately, without even finishing the current
iteration

• The break statement is of course useful in general

The CONTINUE Statement

• continue is another single word statement

• If it is encountered in execution, the control directly

goes to the beginning of the loop for the next

iteration, skipping the statements from the continue

statement to the end of the loop body

Example

Mark averaging with an additional condition :

•if a number > 100 is read, discard it (say because marks

can only be at most 100) and continue with the next

number. As before stop and print the average only when a

negative number is read

Code For New Mark Averaging

main_program{
 float nextmark, sum = 0;
 int count = 0;
 while (true){

cin >> nextmark;
if(nextmark > 100) continue;
if(nextmark < 0)
break;
sum += nextmark;
count++;

 }
 cout << sum/count << endl;
}

If executed, the
control goes back to
condition evaluation

The DO-WHILE Statement

Not very common

Discussed in the book

The FOR Statement: Motivation
• Example: Write a program to print a table of cubes of

numbers from 1 to 100
nt i = 1;
repeat(100){
cout << i <<‘ ‘<< i*i*i << endl;
i++;

}
• This idiom: do something for every number between x

and y occurs very commonly
• The for statement makes it easy to express this idiom, as

follows:
for(int i=1; i<= 100; i++)
 cout << i <<‘ ‘<< i*i*i << endl;

The FOR Statement

for(initialization; condition; update)

 body

•initialization, update : Typically assignments (without
semi-colon)

•condition : boolean expression

•Before the first iteration of the loop the initialization is
executed

•Within each iteration the condition is first tested. If it fails,
the loop execution ends. If the condition succeeds, then
the body is executed. After that the update is executed.
Then the next iteration begins

Flowchart for FOR Statement

Initialization

Previous statement in the program

Condition

Body

Update

Next statement in the Program

False

True

Definition of Repeat

repeat(n)

is same as

for (int _iterator_i = 0, _iterator_limit = n;

 _iterator_i < _iterator_limit;

 _iterator_i ++)

Hence changing n in the loop will have no effect in the
number of iterations

Remarks

• New variables can be declared in initialization. These
variables are accessible inside the loop body, including
condition and update, but not outside

• Variables declared outside can be used inside, unless
shadowed by new variables

• Break and continue can be used, with natural
interpretation

• Typical use of for: a single variable is initialized and
updated, and the condition tests whether it has reached
a certain value. Such a variable is called the control
variable of the for statement

Remarks

• while, do while, for are the C++ statements that allow

you to write loops

• repeat allows you to write a loop, but it is not a part of C+

+ It is a part of simplecpp; it was introduced because it

is very easy to understand.

• Now that you know while, do while, for, you should stop

using repeat

Remarks

An important issues in writing a loop is how to break out

of the loop. You may not necessarily wish to break at the

beginning of the repeated portion. In which case you can

either duplicate code, or use break

	CS 101: Computer Programming and Utilization
	About These Slides
	The Need of a More General Loop
	Outline
	The WHILE Statement
	Slide 6
	WHILE Statement Flowchart
	A Program That Does Not Halt
	A Program That Does Halt
	Explanation
	Slide 11
	Slide 12
	Slide 13
	WHILE vs. REPEAT
	Mark Averaging
	Flowchart Of Mark Averaging vs. Flowchart Of While
	Flowchart Of Mark Averaging vs. Flowchart Of WHILE
	Flowchart Of Mark Averaging vs. Flowchart of WHILE
	A Different Flowchart For Mark Averaging
	Program
	Remarks
	Nested WHILE Statements
	The BREAK Statement
	Example of BREAK
	Slide 25
	The CONTINUE Statement
	Example
	Code For New Mark Averaging
	The DO-WHILE Statement
	The FOR Statement: Motivation
	The FOR Statement
	Flowchart for FOR Statement
	Definition of Repeat
	Slide 34
	Slide 35
	Slide 36

