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Lecture 7: Lecture 7: Loop Invariants



About These Slides

• Based on Chapter 7 of the book 

An Introduction to Programming Through C++ 

by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade
–First update by Varsha Apte

–Second update by Uday Khedker



Reasoning About Loops 

•Reasoning about loop-free programs is easy

•Reasoning about loops is tricky

•How do we know whether what we have written is correct?



Euclid's Algorithm For GCD

• Greatest Common Divisor (GCD) of positive integers m, 

n : 

largest positive integer p that divides both m, n

• Standard method: factorize m,n and multiply common 

factors

• Euclid’s algorithm (2300 years old!) is different and much 

faster

• A program based on Euclid’s method will be much faster 

than program based on factoring



Euclid’s Algorithm

Basic Observation: If d divides both m, n, then d divides m-
n also, assuming m > n

Proof: m=ad, n=bd, so m-n=(a-b)d

Converse is also true: If d divides m-n and n, then it divides 
m too

m, n, m-n have the same common divisors

The largest divisor of m,n is also the largest divisor of m-
n,n

Observation: Instead of finding GCD(m,n), we might as well 
find GCD(n, m-n)



Example

GCD(3977, 943)

=GCD(3977-943,943) = GCD(3034,943)

=GCD(3034-943,943) = GCD(2091,943)

=GCD(2091-943,943) = GCD(1148,943)

=GCD(1148-943,943) = GCD(205, 943)

• We should realize at this point that 205 is just    3977 % 943 
 (repeated subtraction is division) 

• So we could have got to this point just in one shot by writing 
GCD(3977,943) = GCD(3977 % 943, 943)



Example

Should we guess that GCD(m,n) = GCD(m%n, n)?

This is not true if m%n = 0, since we have defined GCD 

only for positive integers.  But we can save the situation, as 

Euclid did

Euclid’s theorem: If m>n>0 are positive integers, then if n 

divides m then GCD(m,n) = n.  Otherwise GCD(m,n) = 

GCD(m%n, n)



Example Continued

GCD(3977,943) 

= GCD(3977 % 943, 943)

= GCD(205, 943) = GCD(205, 943%205) 

= GCD(205,123) = GCD(205%123,123) 

= GCD(82, 123) = GCD(82, 123%82)

= GCD(82, 41)

= 41                                       because 41 divides 82



GCD Algorithm to Program

input: values M, N which are stored in variables m, n.

iteration : Either discover the GCD of M, N, or find smaller 
numbers whose GCD is same as GCD of M, N

 

Details of an iteration:

At the beginning we have numbers stored in m, n, whose 
GCD is the same as GCD(M,N).

If n divides m, then we declare n to be the GCD.

If n does not divide m, then we know that GCD(M,N) = 
GCD(n, m%n)

So we have smaller numbers n, m%n, whose GCD is 
same as GCD(M,N)



Program For GCD

main_program{
int m, n; cin >> m >> n;
while(m % n != 0){

int nextm = n;
int nextn = m % n;
m = nextm;
n = nextn;

}
cout << n << endl;

}
// To store n, m%n into m,n, we cannot
// just write m=n; n=m%n; 
// Can you say why?  Hint: take an example!



Remark

• We have defined variables nextm, nextn for clarity  

• We could have done the assignment with just one variable 

as follows

• int r = m%n; m = n; n = r;

• It should be intuitively clear that in writing the program, we 

have followed the idea from Euclid’s theorem.  However, 

having written the program, we should check this again    



Invariants

Let M, N be the values typed in by the user into variables 

m, n

We can make the following claim

Just before and just after every iteration, 

GCD(m,n) = GCD(M,N) 

The values m and n change, M and N do not

Loop Invariant: A property (describing a pattern of values of 

variables) which does not change due to the loop iteration.



Loop Invariant for GCD
main_program{

int m, n; cin >> m >> n; // Assume M, N
// Invariant: GCD(m,n) = GCD(M,N)

     // because m=M and n=N
while(m % n != 0){

int nextm = n;             // the invariant may
int nextn = m % n;      // not hold after
m = nextm;                 // these statements
n = nextn;

     // Invariant: GCD(m,n) = GCD(M,N)
     // inspite of the fact that m, n have changed

}
cout << n << endl;

}



Loop Invariant for GCD

GCD(3977,943)                                           m=M=3977, n=N=943

= GCD(3977 % 943, 943)                           

= GCD(205, 943) = GCD(205, 943%205)   m=943, n=205

= GCD(205,123) = GCD(205%123,123)     m=205, n=123

= GCD(82, 123) = GCD(82, 123%82)         m=123, n=182

 = GCD(82, 41)                                            m=82,   n=41

= 41          because 41 divides 82



The Intuition Behind Loop Invariant

// Invariant holds here
while(m % n != 0) {

// Invariant holds at the start of the loop
         // The loop body may disturb the invariant
         // by changing the values of variables
         // but the invariant must hold at the start
         // of the next iteration
         // Hence invariant must be restored
     // Invariant must hold here too
     }



The Intuition Behind Loop Invariant
Previous statement in the program 

The loop body may 
disturb the invariant 
but it must be restored 
before beginning the 
execution of the next 
iteration

Condition

Body

Next statement in the Program  

False

True

The invariant holds here 
before the execution of the 
loop begins

The invariant 
holds here before 
the execution 
every subsequent 
iteration



Proof of the Invariant in GCD Program

• Clearly, the invariant is true just before the first iteration

• In any iteration, the new values assigned to m,n are as 

per Euclid’s theorem, and hence the invariant must be 

true at the end, and hence at the beginning of the next 

iteration

• And the above argument applies to all iterations



Invariants In Simple Programs

Correctness of very simple loops may be obvious, and it 

may not be necessary to write invariants etc

However, invariants can be written, and they still make our 

intent more explicit

Example: Cube table program

Next



Invariants In The Cube Table Program

for(int i=1; i<=100; i++)

cout << i <<‘ ‘<<i*i*i<<endl;

Invariant: Cubes until i-1 have been printed 

True for every iteration!

For programs so simple, writing invariants seems to make 

simple things unnecessarily complex.  But invariants are very 

useful when programs are themselves complex/clever



Invariant in Max Finding Program

main_program {
  int n;
  int max = 0;
  // Invariant: max is the largest number seen so far
    while (true) {

cin >> n;
 if(n < 0) break;                       // end of input

            else if (n > max) max = n;      // max becomes n
            else ;   // do nothing
 // Invariant: max is the largest number seen so far
   }
  cout << "Largest Number is" << max << endl;
}



Invariants in Mark Averaging Program
main_program{
  float nextmark, sum = 0; int count = 0;
// Invariants: the values in variables sum and count 
// are the sum and count of relevant marks seen so far
    while (true){

cin >> nextmark;
if(nextmark > 100) continue;
if(nextmark < 0) break;
sum += nextmark; count++;

// Invariants: the values in variables sum and count 
// are the sum and count of relevant marks seen so far
       }
  cout << sum/count << endl;
}



What is the Loop Invariant Here?

unsignd int x;

int y = 0;

while (x != y)

       y++;

•What is the loop invariant?

x >= y

•Is x == y after the loop terminates?

    We will shortly prove it



What is the Loop Invariant Here?

int j=9;

for (int i=0; i<10; i++)

     j--;

•0 <= i < 10    

•0 <= i <=10  

•i+j = 9 

•i+j=9, 0<=i<10           

NO

Yes, but not precise (misses j)
(must also hold before condition
becomes false and loop ends)

Yes, but not precise

Yes, most precise



Is i+j=9 a Loop Invariant Here?

i=0

i < 10

j--

i++

False

True

j=9
Visit to the 
condition

Value 
of i

Value 
of j

Loop body 
executed? 

1 0 9 Yes

2 1 8 Yes

3 2 7 Yes

4 3 6 Yes

5 4 5 Yes

6 5 4 Yes

7 6 3 Yes

8 7 2 Yes

9 8 1 Yes

10 9 0 No



Every Loop Invariant May Not be 
Useful

int j=9;

for (int i=0; i<10; i++)

     j--;

• Some loop invariants

i >= 0

j <= 9 

i+j <= 100

-1000 <= i <= 100

•Usefulness: The invariant should be as "close" to the actual 
values as possible

•May not be possible always: "Undecidable"



Why Discover Loop Invariants?

• A precise loop Invariant represents the essential 
behaviour of a loop

– Allow relating the values before the loop to the values 
after the loop

– without executing the loop

• For understanding a program, loops in the program can 
be represented by their loop invariants

• Finding good loop invariants is critical for proving 
correctness with respect to a chosen property (also 
known as verification)



Use Of The Invariant

Proving correctness of GCD Program

•Using the invariant we can show the algorithm will give the 

correct answer, if it terminates

•If the algorithm terminates, m%n must have been 0  

•But in this case GCD(m,n) = n, which is what the algorithm 

prints  

•But this is correct because by the invariant, GCD(m,n) = 

GCD(M,N) which is what we wanted



Proof of Termination
The only thing that remains is to show termination

•The value of the variable n must decrease in each iteration.  
(because, nextn = m%n which must be smaller than n),

•But n must always be a positive integer in every iteration: (because 
we enter an iteration only if m%n != 0, and then set nextn = m%n)

•Thus n cannot decrease indefinitely, it cannot go below 1

•n starts with the value N, thus the algorithm must terminate after at 
most N iterations

This argument is called a potential function argument. You have 
to creatively choose the potential



Proving x == y Using the Loop Invariant

unsignd int x;

int y = 0;

while (x != y)

       y++;

Loop invariant: x>=y (or y<=x)

•y is initially 0

•y keeps increasing

•Since y<=x, it can at most be equal to x

•But that is the termination condition of the loop



Remarks

•The remarks in Chapter 3 about making a plan and identifying 

the general pattern of actions apply here also. The actions in 

the loop may include preparing for the next iteration, e.g. 

incrementing a variable, or setting new values of m,n as in the 

GCD program

•Think about the invariants and the potential.  This is a good 

way to cross-check that your loop is doing the right thing, and 

that it will terminate. Write these down explicitly when the 

algorithm is even slightly clever  


	CS 101: Computer Programming and Utilization
	About These Slides
	Reasoning About Loops
	Euclid's Algorithm For GCD
	Euclid’s Algorithm
	Example
	Slide 7
	Example Continued
	GCD Algorithm to Program
	Program For GCD
	Remark
	Invariants
	Loop Invariant for GCD
	Slide 14
	The Intuition Behind Loop Invariant
	Slide 16
	Proof of the Invariant in GCD Program
	Invariants In Simple Programs
	Invariants In The Cube Table Program
	Invariant in Max Finding Program
	Invariants in Mark Averaging Program
	What is the Loop Invariant Here?
	Slide 23
	Is i+j=9 a Loop Invariant Here?
	Every Loop Invariant May Not be Useful
	Why Discover Loop Invariants?
	Use Of The Invariant
	Proof of Termination
	Proving x == y Using the Loop Invariant
	Remarks

