CS 101:
Computer Programming and Utilizati
on

Jul-Nov 2016

Bernard Menezes
(csl01@cse.iith.ac.in)

Lecture 8: Common Mathematical
Functions

About These Slides

* Based on Chapter 8 of the book
An Introduction to Programming Through C++
by Abhiram Ranade (Tata McGraw Hill, 2014)

* Original slides by Abhiram Ranade

—First update by Varsha Apte
—Second update by Uday Khedker

Learn Methods For Common Mathemat
ical Operations

Evaluating common mathematical functions such as
Sin(x)

log(X)
Integrating functions numerically, i.e. when you do not know
the closed form

Finding roots of functions, i.e. determining where the
function becomes 0

All the methods we study are approximate. However, we
can use them to get answers that have as small error as we

want
The programs will be simple, using just a single loop

Outline

McLaurin Series (to calculate function values)
Numerical Integration
Bisection Method

Newton-Raphson Method

MaclLaurin Series

When x is close to O:
f(x) = f(0) + f'(0O)x + f"(0)x?/ 2!
+f"(0)x3 /3! + ...

E.g. if f(X) = sin X
f(x) = sin(x), f(0) =0
f'(x) = cos(x), f(0)=1
f'(x) = -sin(x), f'(0)=0
f"(x) = -cos(x), f"(0) =-1
f"(x) = sin(x), f"(0) =0
Now the pattern will repeat

Example

Thus sin(x) = x — x3/3! + x3/5! — x7/7! ...

A fairly accurate value of sin(x) can be obtained by using

sufficiently many terms

Error after taking i1 terms is at most the absolute value of

the 1+1th term

Program Plan-High Level
sin(x) = x — x3/3! + xs/5! — x7/7! ...

Use the accumulation idiom
Use a variable called term

This will keep taking successive values of the terms
Use a variable called sum

Keep adding term into this variable

Program Plan: Detalils

sin(x) = x — x3/3! + xs/5! — x7/7! ...

e Sum can be initialized to the value of the first term So
sum = X

* Now we need to figure out initialization of term and it's
update

* First figure out how to get the kth term from the (k-1) th
term

Program Plan: Terms
sin(x) = x — x3/3! + xs/5! — x7/7! ...

Let t, = kth term of the series, k=1, 2, 3...
t, = (-1)k+1x2k-1/(2k-1)!

ti.s = (-1)kx2x3/(2k-3)!

t, = (-1)kx2k-3/(2k-3)! * (-1)(x2)/((2k-2)(2k-1))

- tea (X)2((2k-2)(2k-1)

Program Plan

Loop control variable will be k
In each iteration we calculate t, from t, ,

The term t, is added to sum
A variable term will keep track of t,

At the beginning of k™ iteration, term will have the value
t._., and at the end of k" iteration it will have the value t,

After ki iteration, sum will have the value = sum of the
first k terms of the Taylor series
Initialize sum = x, term = x

In the first iteration of the loop we calculate the sum of 2
terms. So initialize k = 2

We stop the loop when term becomes small enough

Program

main_program{
double x; cin >> x;
double epsilon = 1.0E-20; // arbitrary.
double sum = x, term = x;
for(int k=2; abs(term) > epsilon; k++){
term *= -x*x / (2*k - 1) / (2*k - 2);
sum += term;

}

cout << sum << endl:

Numerical Integration (General)

Integral from p to q = area under curve

Approximate area by rectangles

Plan (General)

Read inp, g (assume p <q)
Read in n = number of rectangles

Calculate w = width of rectangle = (g-p)/n

ith rectangle, i=0,1,...,n-1 begins at p+iw

Height of ith rectangle = f(p+iw)

Given the code for f, we can calculate height and width
of each rectangle and so we can add up the areas

Example: Numerical Integration To
Calculate In(x)

In(x) = natural logarithm

= fl/x dx from 1 to x
= area under the curve f(x)=1/x from 1 to x

double x; cin >> x;
double n; cin >> n;
double w = (x-1)/n; // width of each rectangle
double area = 0;
for(int 1=0; I<n; I1++)
area = area + w * 1/(1+1*w);
cout << area << endl;

Remarks

By increasing n, we can get our rectangles closer to the
actual function, and thus reduce the error

However, if we use too many rectangles, then there is
roundoff error in every area calculation which will get
added up

We can reduce the error also by using trapeziums instead
of rectangles, or by setting rectangle height = function
value at the midpoint of its width

Instead of f(p+iw), use f(p+iw + w/2)

For calculation of In(x), you can check your calculation by
calling built-in function log(x)

Bisection Method For Finding Roots

* Root of function f: Value x such that f(x)=0

* Many problems can be expressed as finding roots,
e.g. square root of w is the same as root of f(x) = x? —
W

* Requirement:
— Need to be able to evaluate f
— f must be continuous

- We must be given points x, and X, such that f(x,)
and f(x) are not both positive or both negative

Bisection Method For Finding Roots

Because of continuity, there must
be a root between x, and X, (both

Inclusive)
Let x,, = (X, + X5)/2 = midpoint of
interval (X, Xg)
If f(x,,) has same sign as f(x,),
then f(x,,), f(xg) have different
signs
So we can set x, = x,, and
repeat
Similarly if f(x,,) has same sign as
f(Xg)
In each iteration, x,, X, are
coming closer.

When they come closer than
certain epsilon, we can declare x,

as the root

T
_I:'r -:\-II-II-I.-'

raot s wathin

trus nterval

[l neganve

XR

.
root hes within
this nterval

fl) posttoe

gUESS &

o 4

100

90 |
o | %
0L)
60 |
50 |
40 |
30 |
20 |

10 +

-10

Bisection Method For Finding Square
Root of 2

Same as finding the root of
X2-2=0
Need to support both
scenarios:
— XL is negative, xR is
positive
— XL Is positive, XR is
negative
We have to check if XM has
the same sign as xL or xR

Bisection Method for Finding v 2

double xL=0, xR=2, xM, epsilon=1.0E-20;

/[Invariant: XL < xR
while(xR — xL >= epsilon){ // Interval is still large

XM = (XL+xR)/2; // Find the middle point

bool xMisNeg = (XM*xM — 2) < 0;

If(xMisNeqg) /[XM Is on the side of xL
XL = XM;

else XR = xM; // XM Is on the side of xR

[l Invariants continues to remain true

}

cout << xL << endl;

Newton Raphson method

* Method to find the root of f(x), i.e. x s.t. f(x)=0
* Method works if:
f(x) and derivative f '(x) can be easily calculated
A good initial guess x, for the root is available
* Example: To find square root of k
use f(x) = x2- k. f'(x) = 2x
f(x), f '(x) can be calculated easily. 2,3 arithmetic ops

oInitial guess x, = 1 is good enough!

How To Get Better x,,; Given X

I
Point A =(x,0) known

Calculate f(x.)
Point B=(x,,f(x))

Draw the tangent to f(x)
C= intercept on x axis
C=(x_.,0)

i+1?

f'(x) = derivative
= (d f(x))/dx at x
= AB/AC

X..:= X, — AC = X, - AB/(AB/AC) = x- f(x) / f(x)

Sqguare root of y

X, = X-f(x) [1'(x)
f(x) =x?-k, f'(x)=2x
Xiix = Xi- (X7 - K)(2x) = (% + kix)/2

Starting with x,=1, we compute x,, then x,, ...

We can get as close to sgrt(k) as required

Proof not part of the course.

Computing v/ y Using the Newton Rap
hson Method

float k; cin >> k;

float xi=1; // Initial guess. Known to work

repeat(10){ // Repeating a fixed number of times
Xl = (Xi + k/xi)/2;

}

cout << Xi:

How To lterate Until Error Is Small

N < Error

Error Estimate = |f(x)|= |x*x — K|

Make [x*x. — k| Small

float y; cin >> k;

float xi=1;

while(abs(xi*xi — k) > 0.001){
Xl = (Xi + k/xi)/2

}

cout << XxI:

Concluding Remarks

If you want to find f(x), then

use MacLaurin series for f, If f and its derivatives can be
evaluated at O

Express f as an integral of some easily evaluable
function g, and use numerical integration

Express f as the root of some easily evaluable function
g, and use bisection or Newton-Raphson

All the methods are iterative, i.e. the accuracy of the
answer improves with each iteration

	CS 101: Computer Programming and Utilization
	About These Slides
	Learn Methods For Common Mathematical Operations
	Outline
	MacLaurin Series
	Example
	Program Plan-High Level
	Program Plan: Details
	Program Plan: Terms
	Program Plan
	Program
	Numerical Integration (General)
	Plan (General)
	Example: Numerical Integration To Calculate ln(x)
	Remarks
	Bisection Method For Finding Roots
	Slide 17
	Bisection Method For Finding Square Root of 2
	Bisection Method for Finding √2
	PowerPoint Presentation
	Slide 21
	Slide 22
	Slide 23
	How To Iterate Until Error Is Small
	Slide 25
	Concluding Remarks

