
CS 101:
Computer Programming and Utilizati

on

JJulul--NovNov 2016 2016

Bernard MenezesBernard Menezes
(cs101@cse.iitb.ac.in)(cs101@cse.iitb.ac.in)

Lecture 9: Lecture 9: Functions

About These Slides

• Based on Chapter 9 of the book

An Introduction to Programming Through C++

by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade
–First update by Varsha Apte

–Second update by Uday Khedker

Can We Define New Commands?
• We already have many commands, e.g

− sqrt(x) evaluates to the square root of x

− forward(d) moves the turtle forward d pixels

• Can we define new commands? e.g

− gcd(m,n) should evaluate to the GCD of m,n

− dash(d) should move the turtle forward, but draw

dashes as it moves rather than a continuous line

• Function: official name for command

Outline

• Examples of defining and using functions

• How to define a function in general

• How a function executes

• Contract view of functions

• Passing parameters by reference

Why Functions?

Write a program that prints the
GCD of 36, 24, and of 99, 47
Using what you already know:

Make 2 copies of code to find
GCD. Use the first copy to find
the GCD of 36, 24 Use the
second copy to find the GCD of
99, 47

Duplicating code is not good
May make mistakes in copying.
What if we need the GCD at 10
places in the program?
This is inelegant. Ideally, you
should not have to state anything
more than once

main_program{
 int m=36, n=24;
 while(m % n != 0){

int r = m%n;
m = n;
n = r;

 }
 cout << n << endl;
 m=99; n=47;
 while(m % n != 0){

int r = m%n;
m = n;
n = r;

 }
 cout << n << endl;
}

Using a Function
(exactly how it works, later)

• A complete program
 = function definitions
 + main program
• Function definition:

information about
−function name
−how it is to be called
−what it computes
−what it returns

• Main program:
calls or invokes functions
−gcd(a,b) : call/invocation
−gcd(99,c) : another call
−Values supplied for each call:
arguments or parameters to
the call

int gcd(int m, int n){
 while(m % n != 0){

int r = m%n;
m = n;
n = r;

 }
 return n;
}

main_program{
 int a=36,b=24, c=47;
 cout <<gcd(a,b) << endl;
 cout <<gcd(99,c)<< endl;
}

Form of Function Definitions
return-type name-of-function (
 parameter1-type parameter1-name,
 parameter2-type parameter2-name,
 …)
{ function-body }

•return-type: the type of the value returned by the function,
e.g. int

 Some functions may not return anything

 (discussed later)
•name-of-function: e.g. gcd
•parameter: variables that to hold the values of the
arguments to the function. m,n in gcd

•function-body: code that will get executed

Function Execution

int gcd(int m, int n) {
 while(m % n != 0){

int r = m%n;
m = n;
n = r;

 }
 return n;
}
main_program{
 int a=36,b=24;
 cout << gcd(a,b) << endl;
 cout << gcd(99,47)<< endl;
}

• Each function has a
separate data space
(independent scope)

• These data spaces are
arranged in a data
structure called stack

• Imagine the data spaces
as data books and stacked
up one on the other

• The book on the top of the
stack is the one we can
access

 Last-In-First-Out (LIFO)

Function Execution

• Data space of a function is
also called an activation fr
ame (or activation record)

int gcd(int m, int n) {
 while(m % n != 0){

int r = m%n;
m = n;
n = r;

 }
 return n;
}
main_program{
 int a=36,b=24;
 cout << gcd(a,b) << endl;
 cout << gcd(99,47)<< endl;
}

copy n
back

copy values of a
and b into m and n store n in a

return value
area

Function Execution

• Activation frame: area in
memory where function
variables are stored

int gcd(int m, int n) {
 while(m % n != 0){

int r = m%n;
m = n;
n = r;

 }
 return n;
}
main_program{
 int a=36,b=24;
 cout << gcd(a,b) << endl;
 cout << gcd(99,47)<< endl;
}

gcd activation frame is destroyed

How A Function Executes

1. main_program executes and reaches gcd(36,24)

2. main_program suspends

3. Preparations made to run subprogram gcd:

• Area allocated in memory where gcd will have its
variables. activation frame

• Variables corresponding to parameters are created in
activation frame

• Values of arguments are copied from activation frame
of main_program to that of gcd. This is termed
passing arguments by value

4. Execution of function-body starts

(contd.)

• Execution of the called function ends when return

statement is encountered

• Value following the keyword return is copied back to

the calling program, to be used in place of the

expression gcd(…,…)

• Activation frame of function is destroyed, i.e. memory

reserved for it is taken back

• main_program resumes execution

Remarks
• Set of variables in calling program e.g. main_program is

completely disjoint from the set in called function, e.g. gcd

• Both may contain same name. Calling program will
reference the variables in its activation frame, and called
program in its activation frame

• New variables can be created in called function

• Arguments to calls/invocations can be expressions, which
are first evaluated before called function executes

• Functions can be called while executing functions

• A declaration of function must appear before its call

Function To Compute LCM

We can compute the least common multiple of two

numbers m, n using the identity

 LCM(m,n) = m*n/GCD(m,n)

int lcm(int m, int n){

 return m*n/gcd(m,n);

}

lcm calls gcd.

Execution of our Program

int gcd(int m, int n)

{ …}

int lcm(int m, int n)

{

 return m*n/gcd(m,n);

}

main_program{

cout << lcm(50,75);

}

Program To Find LCM Using Functions
gcd, lcm

int gcd(int m, int n)

{ …}

int lcm(int m, int n)

{

 return m*n/gcd(m,n);

}

main_program{

cout << lcm(50,75);

}

int lcm(int m, int n);

main_program{

 cout << lcm(50,75);

}

int gcd(int m, int n)

{ …}

int lcm(int m, int n)

{

 return m*n/gcd(m,n);

}

Function definitions appear
before their calls

Function declarations appe
ar before their calls

Execution

• main_program starts executing
• main_program suspends when the call lcm(..) is encountered
• Activation frame created for lcm
• lcm starts executing after 50, 75 copied to m,n call to gcd

encountered. lcm suspends
• Activation frame created for gcd
• Execution of gcd starts after copying arguments 50, 75 to m,n

of gcd.
• gcd executes. Will returns 25 as result
• Result copied into activation frame of lcm, to replace call to

gcd
• Activation frame of gcd destroyed
• lcm continues execution using result. m*n/gcd(m,n) =

50*75/25 = 150 computed
• 150 returned to main_program, to replace call to lcm
• Activation frame of gcd destroyed
• main_program resumes and prints 15

A Function to Draw Dashes

void dash(int d){
while(d>10){

forward(10); penUp(); d -= 10;
if(d<10) break;
forward(10); penDown(); d -= 10;

}
forward(d); penDown();
return;

}
main_program{

turtleSim();
repeat(4){dash(100); right(90);}

}

Remarks

• Dash does not return a value, so its return type is void

• The return statement used in the body does not have a v

alue after the key word return

• Exercise: write an invariant for the loop in dash

Contract View Of Functions

• Function : piece of code which takes the responsibility of
getting something done

• Specification : what the function is supposed to do Typical
form: If the arguments satisfy certain properties, then a
certain value will be returned, or a certain action will
happen

 certain properties = preconditions

• Example: gcd : If positive integers are given as arguments,
then their GCD will be returned

• If preconditions are not satisfied, nothing is promised

Contract View of Functions (contd.)

• Function = contract between the programmer who wrote
the function, and other programmers who use it

• Programmer who uses the function trusts the function
writer

• Programmer who wrote the function does not care which
program uses it

• Analogous to giving cloth to tailor. Tailor promises to
give you a shirt if the cloth is good. Tailor does not care
who wears the shirt, wearer does not care how it was
stitched

Contract View of Functions (contd.)

Postconditions: After the function finishes execution, does it

modify the state of the program?

Example: After dash finishes its execution it might always

leave the pen up (not true for the code given earlier)

Exercise: Modify the code of dash to ensure that the pen is

up at the end

Post conditions must also be mentioned in the specification

Writing clear specifications is very important

Some Shortcomings

Using what we saw, it is not possible to write functions to

do the following:

•A function that exchanges the values of two variables

•A function that returns not just one value as the result, but

several. For example, we might want a function to return

polar coordinates given Cartesian coordinates

Exchanging The Values of Two Variable
s, Attempt 1

void exchange(int a, int b)
{

int temp = a;
a = b; b = temp;
return;

}
main_program{

int a=1, b=2;
exchange(a,b);
cout << a <<‘ ‘<<

 b << endl;
}

• Does not work. 1, 2 will
get printed

• When exchange is called,
1, 2 are placed into m, n

• Execution of exchange
exchanges values of m,n

• But the change in m,n is
not reflected in the values
of a,b of main_program

Exchanging The Values of Two Variable
s, Attempt 1

void exchange(int a, int b)
{

int temp = a;
a = b; b = temp;
return;

}
main_program{

int a=1, b=2;
exchange(a,b);
cout << a <<‘ ‘<<

 b << endl;
}

Reference Parameters

void exchange(int &m, int
&n){

int temp = m;
m = n; n = temp;
return;

}
main_program{

int a=1, b=2;
exchange(a,b);
cout << a <<‘ ‘<<

 b << endl;
}

• "&" before the name of the
parameter: Says, do not
allocate space for this
parameter, but instead just
use the variable from the
calling program

• With this, when function
changes m,n it is really
changing a,b

• Such parameters are called
reference parameters

Remark

If a certain parameter is a reference parameter, then the

corresponding argument is said to be passed by reference

Cartesian to Polar

void CtoP(double x, double y, double &r, double &theta){
r = sqrt(x*x + y*y);
theta = atan2(y, x); //arctan

return;
}
main_program{

double x=1, y=1, r, theta;
CtoP(x,y,r,theta);
cout << r <<‘ ‘<< theta << endl;

}
// Because r, theta in CtoP are reference parameters,
// changing them changes the value of r, theta in
// the main program.
// Hence will print sqrt(2) and pi/4 (45 degrees)

Concluding Remarks

• Functions allow us to divide the program into smaller part
s such that each part deals with a particular functionality

• Apart from separation of computations, functions also
allow separation of data spaces for computations

• This separation of concerns is a major help in understan
ding programs

• Functions can be seen as another control flow mechanis
m (apart from sequence, selection, and iteration)

• Function calls follow the LIFO (Last-In-First-Out) policy of
execution of nested calls

	CS 101: Computer Programming and Utilization
	About These Slides
	Can We Define New Commands?
	Outline
	Why Functions?
	Using a Function (exactly how it works, later)
	Form of Function Definitions
	Function Execution
	Slide 9
	Slide 10
	How A Function Executes
	(contd.)
	Remarks
	Function To Compute LCM
	Execution of our Program
	Program To Find LCM Using Functions gcd, lcm
	Execution
	A Function to Draw Dashes
	Slide 19
	Contract View Of Functions
	Contract View of Functions (contd.)
	Slide 22
	Some Shortcomings
	Exchanging The Values of Two Variables, Attempt 1
	Slide 25
	Reference Parameters
	Remark
	Cartesian to Polar
	Concluding Remarks

