
CS 101:
Computer Programming and

Utilization

July-Nov 2016July-Nov 2016

Prof. Bernard L MenezesProf. Bernard L Menezes
(cs101@cse.iitb.ac.in)(cs101@cse.iitb.ac.in)

Lecture 1: Lecture 1: IntroductionIntroduction

About These Slides

• Based on Chapter 1 of the book

An Introduction to Programming Through C++

by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade
–First update by Varsha Apte

–Second update by Uday Khedker

Computers and You

•So far almost all of you
have used a computer

–Desktop

–Laptop

–Smartphone

 (is a computer)

"Applications" or "Apps"

Application
are
programs

Web Browser Audio editor

Whatsapp Games

A Computer Program

•A program is a sequence of instructions that a computer
can execute

–A programmer creates this sequence of instructions -
i.e. writes the program

 (or applications or apps)

•So far you have been a user of these programs

•In this course you will learn how to become a programmer

We will not learn Android App programming. They are just examples of
programing. But you will learn enough basic principles of programming
to enable you to learn to program in different environment relatively
easily.

So Let's Start Programming!

First program in a simplified version
of the C++ language called
simplecpp

Our First Program

• Use a Turtle Simulator* contained in simplecpp

• We drive a turtle on the screen!

• To drive the turtle you write a C++ program

• Turtle has a pen, so it draws as it moves

Basic goal: draw interesting, intricate pictures

*From Logo: A language invented for teaching
programming by Seymour Pappert et al. (1967)

Getting Started

• Open a file for editing

• Write turtleSim() in the

main_program

• Compile-and-execute

• A green turtle should be

seen facing east

#include<simplecpp>

 main_program {

turtleSim();

}

How to Run This Program

• We will use Prutor (Programming Tutor) System

https://cs101.cse.iitb.ac.in

We use the same system in the class

• We will learn a more general and more powerful
approach of running programs from command line,
later in the course

Some Instructions That
 TurtleSimulator Can Execute

•penUp()
–Will not draw while moving

•penDown()

–Will draw while moving

•forward (x): Move forward x pixels

–E.g. forward(50) moves the turtle forward 50 pixels

•right (x): turn right by x degrees

•left(x): turn left by x degrees

x:Distance

x:Angle

Our First Task

•With these instructions, make the turtle move in such a
way that we will draw a square of side length 200

•Note: by default, in the beginning,

 the turtle faces towards east, and

 the pen is down

A Program to Draw A Square

• Instructions:
–forward(x)

–right (x)

–left(x)

–penUp()

–penDown()

–wait(x)

#include<simplecpp>

 main_program {

 turtleSim();

 forward(200);right(90);

 forward(200);right(90);

 forward(200);right(90);

 forward(200);

}

Explanation

 #include <simplecpp>

 main_program {

 turtleSim();

 forward(200); right(90);

 forward(200); right (90);

 forward(200); right(90);

 forward(200);

 }

the program will use the
simplecpp package.

Your commands within these
braces {...}package.

Start the turtle simulator (open a
window)

Move forward 200 units

Turn right 90 degrees

Program exits

The C++ Programming Language

• Designed by Bjarne Stroustrup, 1980s

• Derived from the C programming language

• Substantial evolution (still continues)

• Early part of our course: C++ augmented with a

package called simplecpp

(designed by Abhiram Ranade)

More fun and easier to use than bare C++ Built-

in graphics

General Ideas

#include<simplecpp>

 main_program{

 turtleSim();

 forward(200); right(90);

 forward(200); right(90);

 forward(200); right(90);

 forward(200);

}

This sequence of commands in
C++ is the program

Commands or statements
terminated by semicolon ";"

Some commands need
additional information called
arguments
• 90 is the argument to the

command right
• 200 is the argument to the

command forward

General Ideas (contd)

#include<simplecpp>
 main_program{

 turtleSim();
 forward(200);
 right(90);
 forward(200);
 right(90);
 forward(200);
 right(90);
 forward(200);
 }

Commands are
generally executed
from top to bottom, left
to right.
(we can override this
default)

General Ideas (contd)

•Compiling a program:
Translating it into a form that your computer can
understand

•The result of compilation: An executable file

•This is done internally by Prutor
(By invoking a C++ compiler)

How to Draw An Octagon?

•Commands seem quite
repetitive?

•There's a better way!

#include <simplecpp>

 main_program{
 turtleSim();
 forward(100); right(45);
 forward(100); right(45);
 forward(100); right(45);
 forward(100); right(45);
 forward(100); right(45);
 forward(100); right(45);
 forward(100); right(45);
 forward(100); right(45);
}

A Better Way

#include <simplecpp>

main_program{

 turtleSim();

 repeat(8){

 forward(100);

 right(45);

 }

}

repeat statement:

repeat (n) {

some commands

 }

is a command that can be

compiled by simplecpp

The instructions within {...} are

repeated n times

Each round of execution is

called an iteration

How to Draw a Polygon

• We have removed

repeated occurrences of

a command

• Can we generalize it

further to draw a polygon

of any number of

sides??

• Yes! By using variables!

#include <simplecpp>

main_program{

 turtleSim();

 cout << “No. of sides?”;

 int noofsides;

 cin >> noofsides;

 repeat(noofsides){

 forward(10);

 right(360.0/noofsides);

 }

}

Explanation
#include <simplecpp>
main_program{

turtleSim();
cout << “No. of sides?”;
int noofsides;
cin >> noofsides;
repeat(noofsides) {

forward(200);
right(360.0/noofsides);

}
}

Print the sentence within the quotes
on the screen (required in command
line, not in Prutor)

Tell the computer: Reserve space in
your memory where I can store an
integer (int). I will refer to it by the
name noofsides

Read the number that the user types
and store it into the space in memory
named noofsides

Use the integer stored in the space
in memory which is named
noofsides

Divide the number 360 by the number stored in the
space named noofsides and pass the result as an
argument to this command

More Commands/Functions

• sqrt(x) : square root of x

• Trigonometric functions,

• x is in degrees: sin(x), cos(x), tan(x)

• x is in radians sine(x), cosine(x), tangent(x)

• Also for arcsine, arccosine, arctangent etc.

Remarks

You can use commands without worrying about
how exactly do they do their work

• sqrt(17.35) : will get calculated somehow
• forward(100) : may require calculation which

will happen (what calculation?)

Repeat Statement Within

Another Repeat Statement

repeat(4){

repeat(3){

forward(200); penUp();

forward(200); penDown();

}

right(90);

}

Nested Repeat Statements

• Basic rule:
repeat(n){ yyy }

 means
Statements yyy to be executed x times

• If yyy contains repeat (m) {zzz},
−Then the zzz is executed m times in each iteration of
outer repeat
−Thus zzz will get executed n X m times

What will the program fragment on previous slide do?

Nested Repeat Statements

It will draw a
square with dashed
lines

repeat(4){

repeat(3){

 forward(200); penUp();

 forward(200); penDown();

}

right(90);

}

What Does the Following Program Do?

#include <simplecpp>

main_program{

 cout << “a”;

 repeat(5){

 cout << “b”;

 repeat(2){ cout << “c”; }

 cout << “d”;

 }

}

Answer

The program prints

abccdbccdbccdbccdbccd

Remarks: Some Terms

• Control is at statement w
The computer is currently executing statement w

• Control flow
The order in which statements get executed.

−Execution starts at top and goes down (Sequence)

−Retraced if there is a repeat statement (Iteration)

−Later we will see selective executuion (Selection)

• Variable: used for storing data
−Computer memory: blackboard

−Variable: Space on the board in which a value can be written

−Variables have names, e.g. noofsides. We can use the name to refer
to the value written in the variable.

Why Picture Drawing?

• Picture drawing requires calculation

e.g. 360.0/noofsides

• “Draw a triangle of sides with lengths 3, 4, 5
units”

You will need to do trigonometric
calculations to find out the angles between
the sides

• More interesting calculations will be needed to
draw more interesting drawings

A pattern with 36 repetitions. You know
enough to write a program to do this! Try it.

Why Picture Drawing (contd)

• Interesting pictures contain patterns
• Most interesting calculations of any kind (not

necessarily picture drawing) also contain
patterns

• The pattern in the calculations must be mirrored
by patterns in program

• Example: if a certain sequence of computations
needs to be repeated, then do not repeat it
textually, but put it in a repeat statement

More Reasons

• Graphical input and output is very convenient

and useful.

• “A picture is worth a thousand words.”

• Data Visualization: upcoming area of CS

• Drawing is fun!

The Spirit of The Course

• Learn C++ statements/concepts

We have covered a lot of ground in this
lecture, even if it doesn’t seem so

• Learn how to express problems you want to
solve using C++.

• Goal: if you can solve a problem by hand,
possibly taking an enormous amount of time, by
the end of the course, you should be able to
write a program for it

• Learn new ways of solving problems!

The Spirit of The Course

• Do not be afraid of using the computer

• “What if I write xyz in my program instead of

pqr?”

Just do so and find out

• Be adventurous.

• Exercise your knowledge by writing programs –

that is the real test

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

