
CS 101: 
Computer Programming and 

Utilization

Jan-Apr 2017
 

Sharat
(piazza.com/iitb.ac.in/summer2017/cs101iitb/home)

 
 

Lecture 3: Variables, Data Types,   
       and Expressions

 



About These Slides

• Based on Chapter 3 of the book 
An Introduction to Programming Through C++ 
by Abhiram Ranade (Tata McGraw Hill, 2014)

 
• Original slides by Abhiram Ranade

–First update by Varsha Apte
–Second update by Uday Khedker
–Third update by Sunita Sarawagi



Recall

∙ Outlab (due date)
∙ Honor Code
∙ Piazza
∙ Inlab: Any Questions?



Outline

• How to store numbers in the memory of a computer

–Algorithms + Data Structures = Program

• How to perform arithmetic

• How to read numbers into the memory from the keyboard

• How to print numbers on the screen

• Many programs based on all this



Reserving Memory 

Before you store, you must explicitly reserve space 

This is done by a variable declaration statement

variable: name given to the space you reserved.

You must also state what kind of values will be stored in the 
variable: data type of the variable.



Reserving Memory 

0 0 0 0 1 1 0 1 0

1

2

3

4

5 0 0 0 0 0 1 0 1

6

7

8

9

Byte#5 reserved for some variable 
named, "c", say.



Variable Declaration

A general statement of the form:
data_type_name variable_name;

Creates and declares variables
Earlier example 
int sides;
int : name of the data type.  Short form for integer.  Says

reserve space for storing integer values, positive or negative, of 
a standard size

sides : name given to the reserved space, or the variable created



Variable Declaration
0

1

2

3

4

5

6

7

8

9

.......

32 bits

int sides;
Results in a memory location of size 32 bits being reserved for this 
variable. The program will refer to it by the name sides



Variable Names: Identifiers
Sequence of one or more letters, digits and the underscore 
“_” character
•Should not begin with a digit
•Some words such as int cannot be used as variable 
names.  Reserved by C++ for its own use
•Case matters.  ABC and abc are distinct identifiers
Examples: 
•Valid indentifiers: sides, telephone_number, x, x123, 
third_cousin
•Invalid identifiers: #sides, 3rd_cousin, third cousin 
Recommendation: use meaningful names, 
describing the purpose for which the variable will be used



Some Other Data Types Of C++
• unsigned int  : Used for storing integers which will always be 

positive
− 1 word (32 bits) will be allocated
− Ordinary binary representation will be used

• char : Used for storing characters or small integers
− 1 byte will be allocated
− ASCII code of characters is stored

• float : Used for storing real numbers
− 1 word will be allocated
− IEEE FP representation, 8 bits exponent, 24 bits significand

• double : Used for storing real numbers
− 2 words will be allocated
− IEEE FP representation, 11 bits exponent, 53 bits significand



Variable Declarations
 
•Okay to define several variables in 
same statement
•The keyword long : says, I need to 
store bigger or more precise 
numbers, so give me more than 
usual space.
•long unsigned int: Likely 64 bits 
will be allocated
•long double: likely 96 bits will be 
allocated

 

unsigned int 
telephone_number;

 
float velocity;
 
float mass, acceleration;  
 
long unsigned int 

crypto_password;
 
long double 

more_precise_vaule; 



Variable Initialization
• Initialization - an INITIAL value is assigned 

to the variable 
•  

the value stored in the variable at the time of its 
creation
 
−Variables i, vx, vy are declared and are 

initialized  

−2.0e5 is how we write 2.0*105

−‘f’ is a character constant  representing 

the ASCII value of the quoted character

−result and weight are declared but not 

initialized 

•  
 

int i=0, result;

 

float vx=1.0, 
vy=2.0e5, 
weight;

 
char value = ‘f’;





Const Keyword

const double pi = 3.14;

The keyword const means : value assigned once cannot be 

changed

Useful in readability of a program

       area = pi * radius * radius;  

reads better than

area = 3.14 * radius * radius;

 
 





Reading Values Into Variables (1)
• Can read into several variables one afer another
• If you read into a char type variable, the ASCII code of
•  the typed character gets stored
• If you type the character ‘f’, the ASCII value of ‘f’ will get 

stored

cin >> noofsides;

cin >> vx >> vy;

char command;

cin >> command;



Reading Values Into Variables (2)

• User expected to type in values consistent with the type of 

the variable into which it is to be read

• Whitespaces (i.e. space characters, tabs, newlines) typed by 

the user are ignored.

• newline/enter key must be pressed after values are typed



Printing Variables On The Screen

• General form: cout << variable;
• Many values can be printed one after another
• To print newline, use endl
• Additional text can be printed by enclosing it in quotes
• If you print a char variable, then the content is interpreted 

as an ASCII code, and the corresponding character is 
printed.



Printing Variables On The Screen
cout << x;
 
cout << x << y;
 
cout <<“Position:" << 
x << “,  “ << y  << 
endl;
 
char var = ‘G’;
cout << var;  



An Assignment Statement
Used to store results of computation into a variable.  
Form: variable_name = expression;
Example: 
s = u*t + 0.5 * a * t * t;
Expression: can specify a formula involving constants or 
variables, almost as in mathematics

• If variables are specified, their values are used.
• operators must be written explicitly
• operators of same precedence will be 

evaluated left to right.
• Parentheses can be used with usual meaning



Examples

int x=2, y=3, p=4, q=5, r, s, t;
x = r*s;  // disaster. r, s undefined
r = x*y + p*q;  
  // r becomes 2*3 + 4*5 = 26
s = x*(y+p)*q;  
  // s becomes 2*(3+4)*5 = 70
t = x – y + p – q;   
  // equal precedence, 
  // so evaluated left to right,
  // t becomes (((2-3)+4)-5 = -2
 
 
 



Arithmetic Between Different Types 
Allowed

int x=2, y=3, z, w;
float q=3.1, r, s;
r = x;      // representation changed

 // 2 stored as a float in r  "2.0"
z = q;     // store with truncation

//  z takes integer value 3
s = x*q; // convert to same type,                
              // then multiply
              // Which type?



Evaluating  varA op varB
e.g. x*q

• if varA, varB have the same data type: the result will have 

same data type

• if varA, varB have different data types: the result will have 

more expressive data type

• int/short/unsigned int are less expressive than float/double

• shorter types are less expressive than longer types

 



Rules for storing numbers of one 
type into variable of another type

•C++ does the “best possible”.
int x; float y;

x = 2.5;

y = 123456789;

•x will become 2, since it can hold only 
integers.  Fractional part is dropped.
•123456789 cannot be precisely represented in 
24 bits, so something like 1.234567 e 8 will get 
stored.
• 



Integer Division

int x=2, y=3, p=4, q=5, u;

u = x/y + p/q;

cout << p/y;

 

 
 
 • x/y : both are int.  So truncation.  Hence 0

• p/q : similarly 0

• p/y : 4/3 after truncation will be 1  

• So the output is 1



More Examples of Division

int noosides=100, i_angle1, i_angle2;

i_angle1 = 360/noosides + 0.45;             // 3

i_angle2 = 360.0/noosides + 0.45;          // 4

 

 

float f_angle1, f_angle2;

f_angle1 = 360/noosides + 0.1;            // 3.1

f_angle2 = 360.0/noosides + 0.1          // 3.7



An Example Limited Precision

float w, y=1.5, avogadro=6.022e23;
w = y + avogadro;
 
• Actual sum : 602200000000000000000001.5
• y + avogadro will have type float, i.e. about 7 digits of 

precision.  
• With 7 digits of precision (223), all digits after the 7th will 

get truncated and the value of avogadro will be the 
same as the value of y + avogadro

• w will be equal to avogadro 
• No effect of addition!



Program Example

Prompting for input is meaningless in Prutor because it is non-interactive



Re-Assignment

int p=3, q=4, r;

r = p + q;                 // 7 stored into r

cout << r << endl;  // 7 printed as the value of r

r = p * q;                  // 12 stored into r (could be its 

                                 // temporary location)

cout << r << endl;  // 12 printed as the value of r

 

• Same variable can be assigned a value again

• When a variable appears in a statement, its value at 
the time of the execution of the statement gets used



In C++ "=" is assignment not "equal"
int p=12;
p = p+1;
 
See it as:   p      p+1;               // Let p become p+1
 
Rule for evaluation: 
 
• FIRST evaluate the RHS and THEN store the result into the LHS 

variable
• So 1 is added to 12, the value of p
• The result, 13, is then stored in p
• Thus p finally becomes 13
•  
p = p + 1 is nonsensical in mathematics 
“=” in C++ is different from “=” in mathematics



Repeat And Reassignment

main_program{
int i=1;

     repeat(10){
          cout << i << endl;
          i = i + 1;
     }
}
 
 

This program will print 1, 2,…, 10 on separate lines



Another Idiom: Accumulation
main_program{

int term, s = 0;
     repeat(10){
          cin >> term; 
          s = s + term;
     }
     cout << s << endl;
}
 

• Values read are accumulated into s
• Accumulation happens here using +
• We could use other operators too



Fundamental idiom

Sequence generation
• Can you make i take values 1, 3, 5, 7, …?

• Can you make i take values 1, 2, 4, 8, 16, …?

• Both can be done by making slight modifications to 

previous program. 



Composing The Two Idioms

Write a program to calculate n! given n.

main_program{
  int n, nfac=1, i=1;
  cin >> n;
  repeat(n){
     nfac = nfac * i;
     i = i + 1;
  }
  cout << nfac << endl;
}

Accummulation idiom

Sequence idiom



Finding Remainder
• x % y computes the remainder of dividing x by y
• Both x and y must be integer expressions
• Example
 

 
 
 
 
 d0 will equal 8 (the least significant digit of n)
 d1 will equal 7 (the second least significant digit of n)

int n=12345678, d0, d1;
d0 = n % 10;                     // 8
d1 = (n / 10) % 10;           // 7



Some Additional Operators

• The fragment i = i + 1 is required very frequently, and so 
can be abbreviated as i++
++ : increment operator.  Unary

 
• Similarly we may write j-- which means j = j – 1 

-- : decrement operator. Unary



Intricacies Of ++ and --

++ and –- can be written after or before the variable. Both 
cause the variable to increment or decrement but with 
subtle differences

int i=5, j=5, r, s;
 r = ++i; 
 s = j++;
cout << "r= " << r << " s= " << s; 

 
i,j both become 6 but r is 6 and s is 5. 
 
++ and -– can be put inside expressions but not 
recommended in good programming



Compound Assignment

The fragments of the form sum = sum + expression occur 
frequently, and hence they can be shortened to sum += 
expression
Likewise you may have *=, -=, …

Example

int x=5, y=6, z=7, w=8;

x += z;     // x becomes x+z = 12

y *= z+w; // y becomes y*(z+w) = 90 

 



Blocks and Scope
•Code inside {} is called a 
block.
•Blocks are associated with 
repeats, but you may create 
them otherwise too.
•You may declare variables 
inside any block.
New summing program:
•The variable term is 
defined close to where it is 
used, rather than at the 
beginning.  This makes the 
program more readable.
•But the execution of this 
code is a bit involved.  

// The summing 

program

// written differently.

 

main_program{

int s = 0;

   repeat(10){

        int term;

        cin >> term; 

        s = s + term;

   }

   cout << s << term << 

endl;

}

• 



How definitions in a block 
execute

Basic rules
•A variable is defined/created every time control 
reaches the definition.
•All variables defined in a block are destroyed 
every time control reaches the end of the block.
•“Creating” a variable is only notional; the compiler 
simply starts using that region of memory from 
then on.
•Likewise “destroying” a variable is notional.
•New summing program executes exactly like the 
old, it just reads different (better!). 
• 



Shadowing and scope
• Variables defined outside a block can be used 

inside the block, if no variable of the same name 
is defined inside the block.

• If a variable of the same name is defined, then 
from the point of definition to the end of the 
block, the newly defined variable gets used.

• The new variable is said to “shadow” the old 
variable.

• The region of the program where a variable 
defined in a particular definition can be used is 
said to be the scope of the definition.



Example
main_program{

  int x=5;

  cout << x << endl;   // prints 5

  repeat (3) {

    cout << x << endl; // prints 5

    int x = 10;

     x *= 2;

    cout << x << endl; // prints 20

  }

  cout << x << endl; // prints 5

}



Concluding Remarks

Variables are regions of memory which can store values
Variables have a type, as decided at the time of creation
Choose variable names to fit the purpose for which the 

variable is defined
The name of the variable may refer to the region of memory 

(if the name appears on the left hand side of an 
assignment), or its value (if the name appears on the 
right hand side of an assignment)



Further Remarks

Expressions in C++ are similar to those in mathematics, 
except that values may get converted from integer to real 
or vice versa and truncation might happen

Truncation may also happen when values get stored into a 
variable

Sequence generation and accumulation are very common 
idioms

Increment/decrement operators and compound assignment 
operators also are commonly used (they are not found in 
mathematics)



More Remarks

Variables can be defined inside any block
Variables defined outside a block may get shadowed by 

variables defined inside



SAFE quiz
• What is the result of evaluating the 

expression (3+2)/4?
• What is printed by this code snippet: "int 

t=10; repeat(2){t=t-1.2;} cout<<t;"?
• What is printed by this code: "int i=2, j=3, 

k=4; i=j; j=k; k=i; cout << (i*j*k)"?
•  


