CS 101:

Computer Programming and Utilization

Jan-Apr 2017
Sharat
(piazza.com/iitb.ac.in/summer2017/cs101iitb/home)

Lecture 4: Conditionals

About These Slides

- Based on Chapter 3 of the book An Introduction to Programming Through C++ by Abhiram Ranade (Tata McGraw Hill, 2014)
- Original slides by Abhiram Ranade -First update by Varsha Apte
-Second update by Uday Khedker
-Third update by Sunita Sarawagi

Let Us Calculate Income Tax

Write a program to read income and print income tax, using following rules
-If income $\leq 1,80,000$, then tax $=0$
-If income is between 180,000 and 500,000 then tax= 10\%
of (income - 180,000)
-If income is between 500,000 and 800,000 , then tax $=$
$32,000+20 \%$ of (income $-500,000$)
-If income >800,000, then tax $=92,000+30 \%$ of (income -
800,000)
Note: Minimum has changed to 2,50,000 for FY 2016-17
More complex rules depending on age, etc.

An Even Simpler Problem

- Using the rules given earlier, read in the income of an individual and print a message indicating whether or not the individual owes tax
- For completeness, we need
- Sequence of statements default textual appearance
- Repetition of statements repeat statement
- Selection of statements new statement needed: if statement

Outline

- Basic if statement
- if-else statement
- Most general if statement form
- switch statement (we may not get to this)
- Computing Logical expressions

Program for the Simple Problem

```
main_program {
    float income, tax;
    cin >> income;
    if (income <= 180000)
        cout << "No tax owed" << endl;
    if (income > 180000)
    cout << "You owe tax" << endl;
}
// Always checks both conditions
// If the first condition is true,
// then you know second must be false,
// and vice versa. Cannot be avoided
// using just the basic if statement
```


Flowchart

- Pictorial representation of a program
- Statements put inside boxes
- If box C will possibly be executed after box B, then put an arrow from B to C
- Specially convenient for showing conditional execution, because there can be more than one next statements
- Diamond shaped boxes are used for condition checks

Flowchart of the IF Statement

Basic IF Statement

Form:
if (condition) consequent
condition: boolean expression
boolean : Should evaluate to true or false
consequent: C++ statement, e.g. assignment
If condition evaluates to true, then the consequent is executed.
If condition evaluates to false, then consequent is ignored

Conditions

- Simple condition: exp1 relop exp2
relop : relational operator: <, <=, ==, >, >=, != less than, less than or equal, equal, greater than, greater than or equal, not equal
- Condition is considered true if exp1 relates to exp2 as per the specified relational operator relop

A Better Program for our Simple Problem

main_program \{

float income, tax;
cin >> income;
if (income <= 180000)
cout << "No tax owed." << endl;
else
cout << "You owe tax." << endl;
\}
// Only one condition check
// Thus more efficient than previous

Flowchart of the IF-ELSE statement

A More General Form of the IF Statement

if (condition) consequent else alternate

The condition is first evaluated
If it is true, then consequent is executed
If the condition is false, then alternate is executed

Tax Calculation Program

main_program \{

float tax,income;
cin >> income;
if (income <= 180000) tax $=0$;
else if (income <= 500000)
tax $=($ income -180000$)$ * 0.1;
else if (income <= 800000)
tax $=($ income -500000$) * 0.2+32000$;
else tax $=$ (income -800000) * $0.3+92000$;
cout << tax << endl;

Flowchart of the General IF-ELSE Statement (with 3 conditions)

Tax Calculation Flowchart

Most General Form of the IF-ELSE Statement

if (condition_1) consequent_1
else if (condition_2) consequent_2
else if (condition_n) consequent_n
else alternate

Evaluate conditions in order
Some condition true: execute the corresponding consequent. Do not evaluate subsequent conditions All conditions false: execute alternate

Conditions

- Simple condition: exp1 relop exp2
relop : relational operator: <, <=, ==, >, >=, != less than, less than or equal, equal, greater than, greater than or equal, not equal
- Condition is considered true if exp1 relates to exp2 as per the specified relational operator relop

More General Conditions

- condition1 \&\& condition2 : true only if both true Boolean AND
- condition1 || condition2 : true only if at least one is true Boolean OR
- ! condition : true if only if condition is false
- Components of general conditions may themselves be general conditions, e.g.
!((income < 18000) || (income > 500000))
- Exercise: write tax calculation program using general conditions wherever needed

Remark

The consequent in an if statement can be a block containing several statements. If the condition is true, all statements in the block are executed, in order
Likewise the alternate
Example: If income is greater than 800000, then both the statements below get executed
if (income > 800000) \{ tax $=92000+(\text { income }-800000)^{*} 0.3$; cout << "In highest tax bracket. ln ";

In : Newline character. Another way besides endl

Logical Data

- We have seen that we can evaluate conditions, combine conditions
- Why not allow storing the results (true or false) of such computations?
- Indeed, C++ has data type bool into which values of conditions can be stored
- The type bool is named after George Boole, who formalized the manipulation of logical data
- An int variable can have 2^{32} values, a bool variable can have only two values (true/false)

The Data Type Bool

bool highincome, lowincome;
Declares variables highincome and lowincome of type bool highincome = (income > 800000);
bool fun = true;
Will set highincome to true if the variable income contains value larger than 800000
boolean variables which have a value can be used wherever conditions are expected, e.g.
if (highincome)

$$
\operatorname{tax}=\ldots
$$

Example: Determining If a Number is Prime

- Program should take as input a number x (an integer > 1)
- Output Number is prime if it is, or number is not prime if it is not
- Steps:
- For all numbers 2 to $x-1$, check whether any one of these is a factor of n
- These are x - 2 checks
- If none, then number is prime

Example...Prime

Let's try using the accumulation idiom with a boolean

variable

Be careful of = vs ==

Example...Prime

main_program \{

int x; cin >> x; // read x 4534534536
int $\mathrm{i}=2$; $\quad / /$ first factor to check;
bool factorFound = false; // no factor found yet; repeat (x-2) \{
factorFound = factorFound || ((x \% i) == 0);
// Remainder is 0 when x is divisible by i
i++;
\}
if (factorFound) cout $\ll x \ll$ " is not prime"
<< endl;

Remarks

- Conditional execution makes life interesting
- Master the 3 forms of if
- Exercise: write the tax calculation program without using the general if and without evaluating conditions unnecessarily. Hint: use blocks
- You can nest if statements inside each other: some pitfalls in this are discussed in the book

quiz

tinyurl.com/madhav-quiz -cs101

SAFE quiz

- What is printed by this code snippet: "int $x=3, y=1$; $\{$ int $x=4 ;\{x=x+2 ;\} y=x ;\}$ cout $\ll(x+y) ;\}$
- What does this code print? "int $i=0, s=0$; repeat(3) \{if (i\%2==0) s += i; else s += 2*i; i++;\} cout << s;
- What does this program print? "unsigned int $x, c=0$; cin>>x; repeat (32) \{if (x\%2==1) c++; $x=$ $x / 2 ;$ \} cout $\ll c$;
- What does this program print? "unsigned int $x, c=0$; cin>>x; repeat (32) \{if (x\%2==1) c++; $x=$ $x / 2 ;$; cout $\ll c$;

