
CS 101:
Computer Programming and

Utilization

Jan-Apr 2017

Sharat
(piazza.com/iitb.ac.in/summer2017/cs101iitb/home)

Lecture 5: Loops

About These Slides

• Based on Chapter 3 of the book
An Introduction to Programming Through C++
by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade

–First update by Varsha Apte
–Second update by Uday Khedker
–Third update by Sunita Sarawagi

The Need of a More General Loop

Read marks of students from the keyboard and print the
average
•Number of students not given explicitly
•Two cases

1. If a negative number is entered as marks, then it is a
signal that all marks have been entered
 Examples
− Input: 98 96 -1, Output: 97
− Input: 90 80 70 60 -1, Output: 75

2. No such artificial signal
b. The repeat statement repeats a fixed number of times.

Not useful

Outline

The while statement
− Some simple examples
− Mark averaging

The break statement
The continue statement
The do while statement
The for statement

The WHILE Statement

while (condition)
body

next_statement

• Evaluate the condition
If true, execute body. body can
be a single statement or a block,
in which case all the statements
in the block will be executed

1. Go back and execute from step 1
2. If false, execution of while

statement ends and control goes
to the next statement

The WHILE Statement

while (condition)

body

• The condition must eventually
become false, otherwise the
program will never halt. Not
halting is not acceptable

• If the condition is true originally,
then the value of some variable
used in condition must change
in the execution of body, so that
eventually condition becomes
false

• Each execution of the body =
iteration

WHILE Statement Flowchart

Condition

Body

Previous statement in the program

Next statement in the Program

False

True

Time To Demo

A Program That Does Not Halt

main_program{

int x=10;

while(x > 0){

cout << “Iterating” << endl;

}

}

// Will endlessly keep printing

// Not a good program

A Program That Does Halt

main_program{
int x=3;
while(x > 0){

cout << “Iterating” << endl;
x--; // Same as x = x – 1;

}
}
// Will print “Iterating.” 3 times
// Good program (if that is what
// you want)!

Explanation

main_program{

int x=3;

while(x > 0){

cout << “Iterating” <<

endl;

x--;

}

}

• First x is assigned the
value 3

• Condition x > 0 is TRUE
• So body is executed

(prints Iterating)
• AFTER x-- is executed,

the value of x is 2

Explanation

main_program{

int x=3;

while(x > 0){

 cout << “Iterating” <<

endl;

x--;

}

}

• Again the condition is
evaluated. For x with
value 2, condition is still
TRUE

• So execute this

– print iterating

• Decrement x

• Value now is 1

Explanation

main_program{

int x=3;

while(x > 0){

cout << Iterating <<

endl;

x--;

}

}

• Again the condition is
evaluated. For x with
value 1, condition is still
TRUE

• So execute this

– print iterating

• Decrement x

• Value now is 0

Explanation

main_program{

int x=3;

while(x > 0){

cout << Iterating <<

endl;

x--;

}

}

• Again the condition is
evaluated. For x with
value 0, condition is still
FALSE

• So control goes outside
the body of the loop

• Program exits

WHILE vs. REPEAT

Anything you can do using repeat can be done using while
(but not vice-versa)

repeat(n){ any code }

Equivalent to

int i=n;

while(i>0){i--; any code}

This is a simplistic explanation

Marks Average

Read marks of students from the keyboard and print the
average
•Number of students not given explicitly
•Two cases

1. If a negative number is entered as marks, then it is a
signal that all marks have been entered
 Examples
− Input: 98 96 -1, Output: 97
− Input: 90 80 70 60 -1, Output: 75

Mark Averaging

Natural strategy
1.Read the next value
2.If it is negative, then go to step 5, if it is >= 0, continue to
step 3

3.If it is not negative, add the value read to the sum of
values read so far, Add 1 to the count of values

4.Go to step 1
5.Print sum/count
A bit tricky to implement using while

Flowchart Of Mark Averaging vs.
Flowchart Of While

Flowchart of WHILE

Condition

Body

Previous statement in the program

Next statement in the Program

False

True

cin >> nextmark

Start

nextmark>=0

sum = sum + nextmark;
count = count + 1;

Calculate and print average

Flowchart of mark averaging

False

True

Flowchart Of Mark Averaging vs.
Flowchart Of WHILE

• In the flowchart of mark averaging, the first statement to
be repeated is not the condition check

• In the flowchart of while, the first statement to be
repeated, is the condition check

• So we cannot easily express mark averaging using while

Flowchart Of Mark Averaging vs. Flowchart of
WHILE

Start

Original

cin >> nextmark

nextmark>=0

sum = sum + nextmark;
count = count + 1;

False

True

A

B

C

cin >> nextmark

Start

nextmark>=0

sum = sum + nextmark;
count = count + 1;

False

cin >> nextmark A

A

C

B

Modified

A Different Flowchart For Mark Averaging

• Let's label the statements as A (input), C (condition),
and B (accumulation)

• The desired sequence of computation is

A-C-B A-C-B A-C-B ... A-C

• We just rewrite it is

A C-B-A C-B-A C-B-A ... C

• Thus we take input outside of the loop once and then
at the bottom of the loop body

Program
main_program{
 float nextmark, sum = 0;
 int count = 0;
 cin >> nextmark; // A
 while(nextmark >= 0){
 sum += nextmark; count++;
 cin >> nextmark; // copy of A!!
 }
 cout << sum/count << endl;
}

Time To Demo

Remarks

• Often, we naturally think of flowcharts in which the
repetition does not begin with a condition check. In such
cases we must make a copy of the code, as we did in
our example

• Also remember that the condition at the beginning of the
while must say under what conditions we should enter
the loop, not when we should get out of the loop. Write
the condition accordingly

• Note that the condition can be specified as true, which is
always true. This may seem puzzling, since it appears
that the loop will never terminate. But this will be useful
soon.

Marks Averaging

Read marks of students from the keyboard and print the
average
•Number of students not given explicitly
•Two cases

1. If a negative number is entered as marks, then it is a
signal that all marks have been entered
− Input: 98 96 -1, Output: 97

2. No such artificial signal. In JEE we have several
students who get negative marks :) followed by some
who have positive marks

Time To Demo

Key Idea:
 while (cin >> nextNumber) {
}
 The act of taking the next number will tell
us whether we are going to have some
data or not

Algorithm For GCD (aka HCF)

• Greatest Common Divisor (GCD) of +ve integers m, n:

largest positive integer p that divides both m, n

• Standard method: factorize m,n and multiply common
factors

• Euclid’s algorithm (2300 years old!) is different and much
faster

• A program based on Euclid’s method will be much faster
than program based on factoring

Euclid’s Algorithm

Basic Observation: If d divides both m, n, then d divides
m-n also, assuming m > n
Proof: m=ad, n=bd, so m-n=(a-b)d

Converse is also true: If d divides m-n and n, then it divides
m too

m, n, m-n have the same common divisors
The largest divisor of m,n is also the largest divisor of m-n,n
Observation: Instead of finding GCD(m,n), we might as well

find GCD(n, m-n)

Example

GCD(3977, 943)
=GCD(3977-943,943) = GCD(3034,943)
=GCD(3034-943,943) = GCD(2091,943)
=GCD(2091-943,943) = GCD(1148,943)
=GCD(1148-943,943) = GCD(205, 943)

We should realize at this point that 205 is just 3977 % 943
(repeated subtraction is division)

So we could have got to this point just in one shot by writing
GCD(3977,943) = GCD(3977 % 943, 943)

Example

Should we guess that GCD(m,n) = GCD(m%n, n)?

This is not true if m%n = 0.

But we can save the situation, as Euclid did

Euclid’s theorem: If m>n>0 are positive integers, then if n

divides m then GCD(m,n) = n. Otherwise GCD(m,n) =

GCD(m%n, n)

Example Continued

GCD(3977,943)

= GCD(3977 % 943, 943)

= GCD(205, 943) = GCD (943,205) = GCD(205, 943%205)

= GCD(205,123) = GCD(205%123,123)

= GCD(82, 123) = GCD(82, 123%82)

= GCD(82, 41)

= 41 because 41 divides 82

Algorithm Our GCD Program

input: values M, N which are stored in variables m, n.
iteration : Either discover the GCD of M, N, or find smaller
numbers whose GCD is same as GCD of M, N

Details of an iteration:

At the beginning we have numbers stored in m, n, whose
GCD is the same as GCD(M,N).
If n divides m, then we declare n to be the GCD.
If n does not divide m, then we know that GCD(M,N) =
GCD(n, m%n)
So we have smaller numbers n, m%n, whose GCD is
same as GCD(M,N)

Program For GCD
main_program{

int m, n; cin >> m >> n;
while(m % n != 0){

int nextm = n;
int nextn = m % n;
m = nextm;
n = nextn;

}
cout << n << endl;

}
// To store n, m%n into m,n, we cannot
// just write m=n; n=m%n;
// Can you say why? Hint: take an example!

Remark

We have defined variables nextm, nextn for clarity

We could have done the assignment with just one variable
as follows

• int r = m%n; m = n; n = r;

It should be intuitively clear that in writing the program, we
have followed the idea from Euclid’s theorem. However,
having written the program, we should check this again

Time for Demo

