
CS 101:
Computer Programming and

Utilization

Jan-Apr 2017

Sharat
(piazza.com/iitb.ac.in/summer2017/cs101iitb/home)

Lecture 6: More On Loops

About These Slides

• Based on Chapter 3 of the book
An Introduction to Programming Through C++
by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade

–First update by Varsha Apte
–Second update by Uday Khedker
–Third update by Sunita Sarawagi

The Need of a More General Loop

Read marks of students from the keyboard and print the
average
•Number of students not given explicitly
•Two cases

1. If a negative number is entered as marks, then it is a
signal that all marks have been entered
 Examples

− Input: 98 96 -1, Output: 97
− Input: 90 80 70 60 -1, Output: 75

2. No such artificial signal
b. The repeat statement repeats a fixed number of times.

Not useful

Outline

The while statement
− Some simple examples
− Mark averaging

The break statement
The continue statement
The do while statement
The for statement

Recap

The while statement
− Some simple examples

 Mark averaging
− with no negative numbers
− with negative numbers

 A celebrated algorithm: GCD

Nested WHILE Statements
We can put one while statement inside another The
execution is as you might expect. Example:

What do you think this will print?

int i=3;
while(i > 0) {

i--;
int j=5;
while(j > 0){

j--;
cout << “A”;

 }
cout << endl;

}

Time To Demo

The CONTINUE Statement

• continue is another single word statement

• If it is encountered in execution, the control directly

goes to the beginning of the loop for the next

iteration, skipping the statements from the continue

statement to the end of the loop body

Example

Mark averaging with an additional condition :

•if a number > 100 is read, discard it (say because marks

can only be at most 100) and continue with the next

number. As before stop and print the average only when a

negative number is read

Code For New Mark Averaging

main_program{
 float nextmark, sum = 0;
 int count = 0;
 while (cin >> nextmark){

if(nextmark > 100)
continue;
sum += nextmark;
count++;

 }
 cout << sum/count << endl;
}

If executed, the
control goes back to
condition evaluation

Time To Demo

The BREAK Statement

• The break keyword is a statement by itself

• When it is encountered in execution, the execution of

the innermost while statement which contains it is

terminated, and the execution continues from the next

statement following the while statement

Code For New Mark Averaging

main_program{
 float nextmark, sum = 0;
 int count = 0;
 while (true){

cin >> nextmark;
if(nextmark > 100)
continue;
if(nextmark < 0)

break;
sum += nextmark;
count++;

 }
 cout << sum/count << endl;
}

If executed, the
control goes back to
condition evaluation

Example of BREAK

main_program{
 float nextmark, sum = 0;
 int count = 0;
 while(true){

cin >> nextmark;
if(nextmark < 0)

break;
sum += nextmark;
count++;
}

 cout << sum/count << endl;
}

If break is executed,
control goes here, out of
the loop

Explanation

• In our mark averaging program, we did not want to check
the condition at the beginning of the repeated portion

• The break statement allows us just that!
• So we have specified the loop condition as true, but have

put a break inside
• The statements in the loop will repeatedly execute;

however when a negative number is read, the loop will be
exited immediately, without even finishing the current
iteration

• The break statement is of course useful in general

The DO-WHILE Statement

Not very common

Discussed in the book

The FOR Statement: Motivation
• Example: Write a program to print a table of cubes of

numbers from 1 to 100
int i = 1;
repeat(100){
cout << i <<‘ ‘<< i*i*i << endl;
i++;

}
• This idiom: do something for every number between x

and y occurs very commonly
• The for statement makes it easy to express this idiom, as

follows:
for(int i=1; i<= 100; i++)
 cout << i <<‘ ‘<< i*i*i << endl;

Flowchart for FOR Statement

Initialization

Previous statement in the program

Condition

Body

Update

Next statement in the Program

False

True

The FOR Statement

for(initialization; condition; update)
 body
•initialization, update : Typically assignments (without
semi-colon)
•condition : boolean expression
•Before the first iteration of the loop the initialization is
executed
•Within each iteration the condition is first tested. If it fails,
the loop execution ends. If the condition succeeds, then
the body is executed. After that the update is executed.
Then the next iteration begins

Definition of Repeat

repeat(n)

is same as

for (int _iterator_i = 0, _iterator_limit = n;
 _iterator_i < _iterator_limit;
 _iterator_i ++)

Hence changing n in the loop will have no effect in the
number of iterations

Whether a number is prime

main_program{

 int n; cin >> n;

 bool found = false;

 for(int i=2; i < n && !found; i++){

 if(n % i == 0){

 found = true;

 }

 }

 if(found) cout << "Composite.\n";

 else cout << "Prime.\n";

}

Remarks

• while, do while, for are the C++ statements that allow

you to write loops

• repeat allows you to write a loop, but it is not a part of

C++ It is a part of simplecpp; it was introduced because

it is very easy to understand.

• Now that you know while, do while, for, you should stop

using repeat

Remarks

An important issues in writing a loop is how to break out
of the loop. You may not necessarily wish to break at the
beginning of the repeated portion. In which case you can
either duplicate code, or use break

Learn Methods For Common
Mathematical Operations

• Evaluating common mathematical functions such as
Sin(x)
log(x)

• All the methods we study are approximate. However, we
can use them to get answers that have as small error as we
want

• The programs will be simple, using just a single loop

Series expansion for f

• Taylor’s series

 f(x+h) = f(x) + f’(x)h + f’’(x)h^2/2! + f’’’(x) h^3/3!

• MacLaurin Series: Choose x = 0

MacLaurin Series

When x is close to 0:
f(x) = f(0) + f'(0)x + f''(0)x2 / 2!
 + f'''(0)x3 / 3! + …

E.g. if f(x) = sin x
 f(x) = sin(x), f(0) = 0
 f'(x) = cos(x), f'(0) = 1
 f''(x) = -sin(x), f''(0) = 0
 f'''(x) = -cos(x), f'''(0) = -1
f''''(x) = sin(x), f''''(0) = 0

Now the pattern will repeat

Example

Thus sin(x) = x – x3/3! + x5/5! – x7/7! …

A fairly accurate value of sin(x) can be obtained by using

sufficiently many terms

Error after taking i terms is at most the absolute value of

the i+1th term

Program Plan-High Level

sin(x) = x – x3/3! + x5/5! – x7/7! …

Use the accumulation idiom

Use a variable called term

This will keep taking successive values of the terms

Use a variable called sum

Keep adding term into this variable

Program Plan: Details

sin(x) = x – x3/3! + x5/5! – x7/7! …

• Sum can be initialized to the value of the first term So
sum = x

• Now we need to figure out initialization of term and it's
update

• First figure out how to get the kth term from the (k-1) th
term

Program Plan: Terms

sin(x) = x – x3/3! + x5/5! – x7/7! …

Let tk = kth term of the series, k=1, 2, 3…

tk = (-1)k+1x2k-1/(2k-1)!

tk-1 = (-1)kx2k-3/(2k-3)!

tk = (-1)kx2k-3/(2k-3)! * (-1)(x2)/((2k-2)(2k-1))

 = - tk-1 (x)2/((2k-2)(2k-1)

Program Plan
• Loop control variable will be k
• In each iteration we calculate tk from tk-1
• The term tk is added to sum
• A variable term will keep track of tk

At the beginning of kth iteration, term will have the value
tk-1, and at the end of kth iteration it will have the value tk

• After kth iteration, sum will have the value = sum of the
first k terms of the Taylor series

• Initialize sum = x, term = x
• In the first iteration of the loop we calculate the sum of 2

terms. So initialize k = 2
• We stop the loop when term becomes small enough

Program

main_program{
double x; cin >> x;
double epsilon = 1.0E-20; // arbitrary.
double sum = x, term = x;
for(int k=2; abs(term) > epsilon; k++){

 term *= -x*x / (2*k – 1) / (2*k – 2);
 sum += term;
 }
 cout << sum << endl;
}

