CS 101:

Computer Programming and Utilization

Jan-Apr 2017
Sharat
(piazza.com/iitb.ac.in/summer2017/cs101iitb/home)

Lecture 7: Numbers

About These Slides

- Based on Chapter 3 of the book An Introduction to Programming Through C++ by Abhiram Ranade (Tata McGraw Hill, 2014)
- Original slides by Abhiram Ranade -First update by Varsha Apte
-Second update by Uday Khedker
-Third update by Sunita Sarawagi

Data Representation

What happens when you say
int $x=23$;
char $\mathrm{x}=\mathrm{a} \mathrm{a}$ ';
float $x=23.2$
long long int $=2345678$

Model for Today’s Demo

1. We will "open up" the computer program - Compile using the "-g" flag - Run using the emacs debugger which allows step by step instruction

- Example char letter = ' A ';

2. We will use a calculator

- Some steps will be 'invisible'
- Example real numbers

3. In both cases, we will need audience participation

Demo

How does the computer store c and d ?

$$
\text { int } c \text {; char } d ; \text { cin >> c >> d; }
$$

Using numeric codes

Define a numeric code for representing letters
-ASCII (American Standard Code for Information Interchange)
is the commonly used code
-Letter 'a' = 97 in ASCII, 'b' = 98, ...
-Uppercase letters, symbols, digits also have codes
-Code also for space character
-Words = sequences of ASCII codes of letters in the word 'computer' = 99, 111,109,112,117,116,101,114

- To write characters in, say, Devanagari, we need Unicode and a lot more concept

Representing Numbers

- Digital circuits can store 0's and 1's (using capacitors)
- How to represent numbers using this capability?
- Key idea : Binary number system
- Represent all data using only 1's and 0's

Number Systems

- Roman system
- new symbols for larger numbers
- could not represent larger numbers

Roman Numeral Table							
1		14	XIV	27	x $\times 1 /$	150	CL
2	II	15	XV	28	XXVIII	200	CC
3	III	16	XVI	29	XXIX	300	CCC
4	IV	17	XVIII	30	x $\times x$	400	CD
5	V	18	XVIII	31	XXXI	500	D
6	VI	19	XIX	40	XL	600	DC
7	VII	20	x x	50	L	700	DCC
8	VIII	21	XXI	60	LX	800	DCCC
9	IX	22	xXII	70	LXX	900	CM
10	X	23	XXIII	80	LXXX	1000	M
11	XI	24	XXIV	90	XC	1600	MDC
12	XII	25	XXV	100	C	1700	MDCC
13	XIII	26	XXVI	101	Cl	1900	MCM

Mathäh Tube.com

- Radix based number systems (e.g. Decimal)
- Revolutionary concept in number representation!

Radix-Based Number Systems

- Key idea: position of a symbol determines its value! PLACE VALUE
- How do we determine its relative position in a list of symbols?
- A Zero symbol needed to shift the position of a symbol

Decimal Number System

- RADIX is 10. Place-Values: $1,10,100,1000 . .$.
- In the decimal system: 346
- Value of "6" = 6
- Value of "4" = 4×10
- Value of "3" = $3 \times 10 \times 10$
- Notice that we automatically decide to read either left to right, or vice versa based on convenience

Radix-Based Number Systems

- Key idea: position of a symbol determines its value!

PLACE VALUE

- How do we determine its relative position in a list of symbols?
- A Zero symbol needed to shift the position of a symbol
- Number systems with radix r should have r symbols
- The value of a symbol is multiplied by r for each left shift.
- Multiply from right to left by: $1, r, r^{2}, r^{3} \ldots$ and then add

Octal Number Systems

- RADIX is 8 . Place Value: $1,8,64,512, \ldots$.
- 8 digits needed : 0,1,2,3,4,5,6,7
- 23 in octal
- Value of $3=3$
- Value of $2=2 \times 8$
- Value of 23 in octal $=19$ in decimal
- 45171 in octal $=$

$$
\begin{aligned}
& -1+8^{*} 7+8^{*} 8^{*} 1+8^{*} 8^{*} 8^{*} 5+8^{*} 8^{*} 8^{*} 8^{*} 4 \\
& =19065 \text { in decimal }
\end{aligned}
$$

Binary System

- Radix= 2
- Needs ONLY TWO digits : 0 and 1
- Place-value: powers of two:

128	64	32	16	8	4	2	1

- 11 in binary:
- Value of rightmost $1=1$
- Value of next $1=1$ x2
-11 in binary $=3$ in decimal
- 110011

128	$\mathbf{6 4}$	$\mathbf{3 2}$	$\mathbf{1 6}$	$\mathbf{8}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$
		1	1	0	0	1	1

$=1 \times 1+1 \times 2+0 \times 4+0 \times 8+1 \times 16+1 \times 32$
$=1+2+16+32=51$ (in decimal)

Binary System: Representing Integers

- Decimal to binary conversion
- Express it as a sum of powers of two
- Example: the number 154 in binary:

$$
\begin{aligned}
&- 154=128+16+8+2 \\
&-154=1 \times 2^{7}+0 \times 2^{6}+0 \times 2^{5}+1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+ \\
& 1 \times 2^{1}+0 \times 2^{0}
\end{aligned}
$$

128	$\mathbf{6 4}$	$\mathbf{3 2}$	$\mathbf{1 6}$	$\mathbf{8}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$
1	0	0	1	1	0	1	0

- Thus 154 in binary is 10011010

Binary System: Representing Numbers

- Decimal to binary conversion
- Express it as a sum of powers of two
- Example: the number 154 in binary:
- Repeatedly divided 154
- Keep track of remainder
- Keep track of quotient

128	$\mathbf{6 4}$	$\mathbf{3 2}$	$\mathbf{1 6}$	$\mathbf{8}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$
1	0	0	1	1	0	1	0

Large Integers

- Number of bits decides how large the integers are
- But how many bits to use?
- The number of bits (capacitors/wires) used cannot be chosen arbitrarily
- Choices allowed: 8, 16, 32, 64
- Example: To store 25 using 32 bits:
- 25 Decimal $=00000000000000000000000000011001$
- So store the following charge pattern (H=High, L=Low)
- LLLLLLLLLLLLLLLLLLLLLLLLLLLHHLLH
- Range stored: 0 to $2^{32}-1$. If your numbers are likely to be larger, then use 64 bits.
- Choose the number of bits depending upon how large you

Representing Negative Integers

- One of the bits is used to indicate sign
- Sign bit $=0$ means positive, $=1$ means negative number
- To store - 25 use
- 10000000000000000000000000011001, Leftmost bit = sign bit
- Range stored: - $\left(2^{31}-1\right)$ to $2^{31}-1$
- Notice the following though: How to add 2 and -1
- 2 is $0010-1$ is 1001
- Cannot perform "usual addition"
- Two zeros 0000, and 1000: Every application will need to take extra steps to make sure that non-zero values are also not negative zero.

Two's complement

- If x is positive: $\left(0<=\mathrm{x}<=2^{n-1}-1\right)$
- Binary form of x
- If x is negative $\left(-2^{n-1}<=x<0\right)$
- Binary form of $2^{n}-x$
- E.g. -25 in 2's complement:
$11111111111111111111111111111100111=$ (100000000000000000000000000000000 -00000000000000000000000000011001)
- In this representation, how to add 2 and -1?

$$
\text { - } 0010 \text { and } 1111
$$

- With two's complement, storing a 4-bit number in an 8 -bit register is a matter of repeating its most significant bit: 0001 (1, in four bits). 00000001 (1, in eight bits) $1110(-2), 11111110(-2$, in eight bits)

Demo

