CS 101: Computer Programming and Utilization

Jan-Apr 2017

Sharat (piazza.com/iitb.ac.in/summer2017/cs101iitb/home)

Lecture 7: Numbers

About These Slides

- Based on Chapter 3 of the book
 An Introduction to Programming Through C++ by Abhiram Ranade (Tata McGraw Hill, 2014)
- Original slides by Abhiram Ranade

 First update by Varsha Apte
 Second update by Uday Khedker
 Third update by Sunita Sarawagi

Data Representation

What happens when you say int x = 23; char x= 'a'; float x = 23.2 long long int = 2345678

Model for Today's Demo

- 1. We will "open up" the computer program
 - Compile using the "-g" flag
 - Run using the emacs debugger which allows step by step instruction
 - Example char letter = 'A';
- 2. We will use a calculator
 - Some steps will be 'invisible'
 - Example real numbers
- 3. In both cases, we will need audience participation

Demo

How does the computer store c and d?

int c; char d; cin >> c >> d;

Using numeric codes

Define a numeric code for representing letters

•ASCII (American Standard Code for Information Interchange) is the commonly used code

- •Letter 'a' = 97 in ASCII, 'b' = 98, ...
- •Uppercase letters, symbols, digits also have codes
- •Code also for space character
- •Words = sequences of ASCII codes of letters in the word 'computer' = 99, 111,109,112,117,116,101,114
- To write characters in, say, Devanagari, we need Unicode and a lot more concept

Representing Numbers

- Digital circuits can store 0's and 1's (using capacitors)
- How to represent numbers using this capability?
- Key idea : <u>Binary number system</u>
- Represent all data using only 1's and 0's

Number Systems

- Roman system
 - new symbols for larger numbers
 - could not represent larger numbers

Roman Numeral Table									
1	1	14	XIV	27	XXVII	150	CL		
2	H	15	XV	28	XXVIII	200	сс		
3	III	16	XVI	29	XXIX	300	CCC		
4	IV	17	XVII	30	XXX	400	CD		
5	V	18	XVIII	31	XXXI	500	D		
6	VI	19	XIX	40	XL	600	DC		
7	VII	20	xx	50	L	700	DCC		
8	VIII	21	XXI	60	LX	800	DCCC		
9	IX	22	XXII	70	LXX	900	СМ		
10	Х	23	XXIII	80	LXXX	1000	м		
11	XI	24	XXIV	90	XC	1600	MDC		
12	XII	25	XXV	100	С	1700	MDCC		
13	XIII	26	XXVI	101	СІ	1900	MCM		

MathATube.com

- Radix based number systems (e.g. Decimal)
- Revolutionary concept in number representation!

Radix-Based Number Systems

- Key idea: position of a symbol determines its value!
 PLACE VALUE
 - How do we determine its relative position in a list of symbols?
 - A Zero symbol needed to shift the position of a symbol

Decimal Number System

- **RADIX** is 10. Place-Values: 1, 10,100,1000...
- In the decimal system: 346
 - Value of "6" = 6
 - Value of "4" = 4 x 10
 - Value of "3" = $3 \times 10 \times 10$
- Notice that we automatically decide to read either left to right, or vice versa based on convenience

Radix-Based Number Systems

- Key idea: position of a symbol determines its value!
 PLACE VALUE
 - How do we determine its relative position in a list of symbols?
 - A Zero symbol needed to shift the position of a symbol
- Number systems with radix *r* should have *r* symbols
 - The value of a symbol is multiplied by *r* for each left shift.
 - Multiply from right to left by: 1, r, r^2 , r^3 ... and then add

Octal Number Systems

- RADIX is 8. Place Value: 1, 8, 64, 512,....
- 8 digits needed : 0,1,2,3,4,5,6,7
- 23 in octal
 - Value of 3 = 3
 - Value of $2 = 2 \times 8$
 - Value of 23 in octal = 19 in decimal
- 45171 in octal =
 - 1+8*7+8*8*1+8*8*8*5+8*8*8*8*4
 - = 19065 in decimal

Binary System

- Radix= 2
- Needs ONLY TWO digits : 0 and 1
- Place-value: powers of two:

128	64	32	16	8	4	2	1
-----	----	----	----	---	---	---	---

- 11 in binary:
 - Value of rightmost 1 = 1
 - Value of next $1 = 1 x^2$
 - -11 in binary = 3 in decimal
- 110011

128	64	32	16	8	4	2	1
		1	1	0	0	1	1

= 1x1 + 1x2 + 0x4 + 0x8 + 1x16 + 1x32= 1 + 2 + 16 + 32 = 51 (in decimal)

Binary System: Representing Integers

- Decimal to binary conversion
 - Express it as a sum of powers of two
- Example: the number 154 in binary:

 $-154 = 1 \times 2^{7} + 0 \times 2^{6} + 0 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$

128	64	32	16	8	4	2	1
1	0	0	1	1	0	1	0

- Thus 154 in binary is 10011010

Binary System: Representing Numbers

- Decimal to binary conversion
 - Express it as a sum of powers of two
- Example: the number 154 in binary:
 - Repeatedly divided 154
 - Keep track of remainder
 - Keep track of quotient

128	64	32	16	8	4	2	1
1	0	0	1	1	0	1	0

Large Integers

- Number of bits decides how large the integers are
- But how many bits to use?
- The number of bits (capacitors/wires) used cannot be chosen
 arbitrarily
- Choices allowed: 8, 16, 32, 64
- Example: To store 25 using 32 bits:

 - So store the following charge pattern (H=High, L=Low)
 - LLLLLLLLLLLLLLLLLLLLLLLLHHLLH
- Range stored: 0 to 2³² 1. If your numbers are likely to be larger, then use 64 bits.
- Choose the number of bits depending upon how large you
 export the number to be

Representing Negative Integers

- One of the bits is used to indicate sign
- Sign bit = 0 means positive, = 1 means negative number
- To store -25 use
- Range stored: $-(2^{31} 1)$ to $2^{31} 1$
- Notice the following though: How to add 2 and -1
 - 2 is 0010 -1 is 1001
 - Cannot perform "usual addition"
- Two zeros 0000, and 1000: Every application will need to take extra steps to make sure that non-zero values are also not negative zero.

Two's complement

- If x is positive: (0 <= x <= 2ⁿ⁻¹ − 1)
 - Binary form of x
- If x is negative $(-2^{n-1} \le x \le 0)$
 - Binary form of 2ⁿ x
- In this representation, how to add 2 and -1?
 - 0010 and 1111
- With two's complement, storing a 4-bit number in an 8-bit register is a matter of repeating its most significant bit: 0001 (1, in four bits). 00000001 (1, in eight bits) 1110 (-2), 11111110 (-2, in eight bits)

