
CS 101:
Computer Programming and

Utilization

Jan-Apr 2017

Sharat
(piazza.com/iitb.ac.in/summer2017/cs101iitb/home)

Lecture 7: Numbers

About These Slides

• Based on Chapter 3 of the book
An Introduction to Programming Through C++
by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade

–First update by Varsha Apte
–Second update by Uday Khedker
–Third update by Sunita Sarawagi

Data Representation

What happens when you say
int x = 23;
char x= ‘a’;

float x = 23.2
long long int = 2345678

Model for Today’s Demo

1. We will “open up” the computer program
– Compile using the “-g” flag
– Run using the emacs debugger which allows

step by step instruction
– Example char letter = ‘A’;

2. We will use a calculator
– Some steps will be ‘invisible’
– Example real numbers

3. In both cases, we will need audience
participation

Demo

How does the computer store c and d?

int c; char d; cin >> c >> d;

Using numeric codes

Define a numeric code for representing letters
•ASCII (American Standard Code for Information Interchange)
is the commonly used code
•Letter ‘a’ = 97 in ASCII, ‘b’ = 98, …
•Uppercase letters, symbols, digits also have codes
•Code also for space character
•Words = sequences of ASCII codes of letters in the word
 ‘computer’ = 99, 111,109,112,117,116,101,114
● To write characters in, say, Devanagari, we need Unicode

and a lot more concept

Representing Numbers

• Digital circuits can store 0's and 1's (using capacitors)

• How to represent numbers using this capability?

• Key idea : Binary number system

• Represent all data using only 1's and 0's

Number Systems

• Roman system

– new symbols for larger
numbers

– could not represent
larger numbers

• Radix based number systems (e.g. Decimal)

• Revolutionary concept in number representation!

Radix-Based Number Systems

• Key idea: position of a symbol determines its value!
PLACE VALUE
– How do we determine its relative position in a list of

symbols?
– A Zero symbol needed to shift the position of a symbol

Decimal Number System

• RADIX is 10. Place-Values: 1, 10,100,1000...

• In the decimal system: 346

− Value of "6" = 6

− Value of "4" = 4 x 10

− Value of "3" = 3 x 10 x 10

• Notice that we automatically decide to read either left

to right, or vice versa based on convenience

Radix-Based Number Systems

• Key idea: position of a symbol determines its value!
PLACE VALUE
– How do we determine its relative position in a list of

symbols?
– A Zero symbol needed to shift the position of a symbol

• Number systems with radix r should have r symbols
– The value of a symbol is multiplied by r for each left shift.
– Multiply from right to left by: 1, r, r2, r3

, ... and then add

Octal Number Systems

• RADIX is 8. Place Value: 1, 8, 64, 512,....
• 8 digits needed : 0,1,2,3,4,5,6,7
• 23 in octal

– Value of 3 = 3
– Value of 2 = 2 x 8
– Value of 23 in octal = 19 in decimal

• 45171 in octal =
– 1+8*7+8*8*1+8*8*8*5+8*8*8*8*4
 = 19065 in decimal

Binary System
• Radix= 2
• Needs ONLY TWO digits : 0 and 1
• Place-value: powers of two:

• 11 in binary:
– Value of rightmost 1 = 1
– Value of next 1 = 1 x2
– 11 in binary = 3 in decimal

• 110011

= 1x1 + 1 x2 + 0 x 4 + 0 x 8 + 1 x 16 + 1 x 32
= 1 + 2 + 16 + 32= 51 (in decimal)

128 64 32 16 8 4 2 1

128 64 32 16 8 4 2 1

1 1 0 0 1 1

Binary System: Representing Integers

• Decimal to binary conversion
– Express it as a sum of powers of two

• Example: the number 154 in binary:
– 154 = 128 + 16 + 8 + 2
– 154 = 1 x 27 + 0 x 26 + 0 x 25 + 1 x 24 + 1 x 23 +0 x 22 +

1 x 21 + 0 x 20

– Thus 154 in binary is 10011010

128 64 32 16 8 4 2 1

1 0 0 1 1 0 1 0

Binary System: Representing Numbers

• Decimal to binary conversion
– Express it as a sum of powers of two

• Example: the number 154 in binary:
– Repeatedly divided 154

• Keep track of remainder
• Keep track of quotient

128 64 32 16 8 4 2 1

1 0 0 1 1 0 1 0

Large Integers

• Number of bits decides how large the integers are
• But how many bits to use?
• The number of bits (capacitors/wires) used cannot be chosen

arbitrarily
• Choices allowed: 8, 16, 32, 64
• Example: To store 25 using 32 bits:

− 25 Decimal = 00000000000000000000000000011001
− So store the following charge pattern (H=High, L=Low)
− LLLLLLLLLLLLLLLLLLLLLLLLLLLHHLLH

• Range stored: 0 to 232 – 1. If your numbers are likely to be
larger, then use 64 bits.

• Choose the number of bits depending upon how large you
expect the number to be.

Representing Negative Integers
• One of the bits is used to indicate sign
• Sign bit = 0 means positive, = 1 means negative number
• To store -25 use

− 10000000000000000000000000011001, Leftmost bit = sign bit

• Range stored: -(231 – 1) to 231 – 1
• Notice the following though: How to add 2 and -1

− 2 is 0010 -1 is 1001
− Cannot perform “usual addition”

• Two zeros 0000, and 1000: Every application will need to
take extra steps to make sure that non-zero values are
also not negative zero.

Two’s complement
• If x is positive: (0 <= x <= 2n-1 – 1)

• Binary form of x
• If x is negative (-2n-1 <= x < 0)

• Binary form of 2n - x
• E.g. -25 in 2's complement:

11111111111111111111111111111100111 =
(100000000000000000000000000000000
-00000000000000000000000000011001)

• In this representation, how to add 2 and -1?

− 0010 and 1111

• With two's complement, storing a 4-bit number in an 8-bit register is a
matter of repeating its most significant bit: 0001 (1, in four bits). 00000001
(1, in eight bits) 1110 (-2), 11111110 (-2, in eight bits)

Demo

