
CS 101:
Computer Programming and

Utilization

Jan-Apr 2017

Sharat
(piazza.com/iitb.ac.in/summer2017/cs101iitb/home)

Lecture 8B: Numbers (Continued)

About These Slides

• Based on Chapter 3 of the book
An Introduction to Programming Through C++
by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade

–First update by Varsha Apte
–Second update by Uday Khedker
–Third update by Sunita Sarawagi

What happens when you say
float x = 23.2

double y = 1.3E27

Concluding Remarks
• Key idea 1: Current/charge/voltage values in the computer

circuits represent bits (0 or 1).
• Key idea 2: Use numerical codes to represent non numerical

entities
− letters and other symbols: ASCII code
− In fact, even the program written in “English” gets

converted to numbers. So we have operations to perform
on the computer and operation codes

• Key idea 3: Radix based system
− Integers can be represented using sequence of bits. In a

fixed number of bits you can represent positive integers in
a fixed range.

− If you dedicate a bit to representing the sign, the range of
representable numbers changes.

Concluding Remarks
• Key idea 4:
− Real numbers are represented approximately.
− Because we need very large numbers and very small

numbers, we cannot have a fixed location for the “decimal
point” (or “binary point”). If you want more precision or
greater range, you need to use larger number of bits.

Recap

Some Data Types Of C++
• unsigned int : Used for storing integers which will always be

positive
− 1 word (32 bits) will be allocated
− Ordinary binary representation will be used

• char : Used for storing characters or small integers
− 1 byte will be allocated
− ASCII code of characters is stored

• float : Used for storing real numbers
− 1 word will be allocated
− IEEE FP representation, 8 bits exponent, 24 bits significand

• double : Used for storing real numbers
− 2 words will be allocated
− IEEE FP representation, 11 bits exponent, 53 bits significand

Variable Declarations

•Okay to define several variables in
same statement
•The keyword long : says, I need to
store bigger or more precise
numbers, so give me more than
usual space.
•long unsigned int: Likely 64 bits
will be allocated
•long double: likely 96 bits will be
allocated

unsigned int
telephone_number;

float velocity;

float mass, acceleration;

long unsigned int
crypto_password;

long double
more_precise_vaule;

Variable Initialization
•

−

−
−

−

Const Keyword

const double pi = 3.14;

The keyword const means : value assigned once cannot be

changed

Useful in readability of a program

 area = pi * radius * radius;

reads better than

area = 3.14 * radius * radius;

Reading Values Into Variables (1)

• Can read into several variables one
after another

• If you read into a char type variable,
the ASCII code of the typed character
gets stored

• If you type the character ‘f’, the ASCII
value of ‘f’ will get stored

cin >> noofsides;

cin >> vx >> vy;

char command;

cin >> command;

Reading Values Into Variables (2)

Some rules:

• User expected to type in values consistent with the type of

the variable into which it is to be read

• Whitespaces (i.e. space characters, tabs, newlines) typed by

the user are ignored.

• newline/enter key must be pressed after values are typed

An Assignment Statement
Used to store results of computation into a variable. Form:
variable_name = expression;
Example:
s = u*t + 0.5 * a * t * t;
Expression : can specify a formula involving constants or
variables, almost as in mathematics

• If variables are specified, their values are used.
• operators must be written explicitly
• multiplication, division have higher precedence than

addition, subtraction
• multiplication, division have same precedence
• addition, subtraction have same precedence
• operators of same precedence will be evaluated left to

right.
• Parentheses can be used with usual meaning

Arithmetic Between Different Types
Allowed

int x=2, y=3, z, w;
float q=3.1, r, s;
r = x; // representation changed

 // 2 stored as a float in r "2.0"
z = q; // store with truncation

// z takes integer value 3
s = x*q; // convert to same type,
 // then multiply
 // Which type?

Evaluating varA op varB
e.g. x*q

• if varA, varB have the same data type: the result will have

same data type

• if varA, varB have different data types: the result will have

more expressive data type

• int/short/unsigned int are less expressive than float/double

• shorter types are less expressive than longer types

Rules for storing numbers of one
type into variable of another type

•C++ does the “best possible”.
int x; float y;

x = 2.5;

y = 123456789;

•x will become 2, since it can hold only
integers. Fractional part is dropped.
•123456789 cannot be precisely represented in
24 bits, so something like 1.234567 e 8 will get
stored.

Compound Assignment

The fragments of the form sum = sum + expression occur
frequently, and hence they can be shortened to sum +=
expression
Likewise you may have *=, -=, …

Example

int x=5, y=6, z=7, w=8;

x += z; // x becomes x+z = 12

y *= z+w; // y becomes y*(z+w) = 90

Blocks and Scope
•Code inside {} is called a
block.
•Blocks are associated with
repeats; may create them
otherwise too. You may
declare variables inside any
block.
•The variable term is
defined close to where it is
used, rather than at the
beginning. This makes the
program more readable.

// The summing

program

// written differently.

main_program{

int s = 0;

 repeat(10){

 int term;

 cin >> term;

 s = s + term;

 }

 cout << s << term <<

endl;

}

How definitions in a block
execute

Basic rules
•A variable is defined/created every time control
reaches the definition.
•All variables defined in a block are destroyed
every time control reaches the end of the block.
•“Creating” a variable is only notional; the compiler
simply starts using that region of memory from
then on.
•Likewise “destroying” a variable is notional.
•New summing program executes exactly like the
old, it just reads different (better!).

Shadowing and scope
• Variables defined outside a block can be used

inside the block, if no variable of the same name
is defined inside the block.

• If a variable of the same name is defined, then
from the point of definition to the end of the
block, the newly defined variable gets used.

• The new variable is said to “shadow” the old
variable.

• The region of the program where a variable
defined in a particular definition can be used is
said to be the scope of the definition.

