CS 101:
Computer Programming and
Utilization

Jan-Apr 2017

Sharat
(piazza.com/iitb.ac.infsummer2017/cs101iitb/home)

Lecture 9A: String



About These Slides

Based on Chapter 3 of the book
An Introduction to Programming Through C++
by Abhiram Ranade (Tata McGraw Hill, 2014)

Original slides by Abhiram Ranade
—First update by Varsha Apte

—Second update by Uday Khedker
—Third update by Sunita Sarawagi



Announcements

1. Individual inlab June 16
2. Final Exam: Monday June 26 2pm
3. Viva slots: On demand



The Standard Library

Comes with every C++ distribution

Contains many functions and classes that you are likely to
need in day to day programming

The classes have been optimized and debugged thoroughly

If you use them, you may be able to write programs with very
little work

Highly recommended that you use functions and classes form
the standard library whenever possible

Today the “string” object

You will need: http://www.cplusplus.com/reference/string/



http://www.cplusplus.com/reference/string
http://www.cplusplus.com/reference/stl/

Outline

e Motivation:
— Recall that the “cin” constructs eats white spaces
— More important, we want to deal with a complete
sequence of characters
— For example, genes are made by the sequence of
characters from the alphabet ‘ACTG’
e Goal
— Read “Hello world” (possibly mistyped as “hello.world”)

and output as Hello World



The String Class: Reading

#include <string>

string p

getline (cin, p)

This will read a complete line (including leading spaces, and
any spaces in between up to the newline)

But first we will consider cases when we do not have space
A string object is a sequence of characters, so there is a good

relation between a string object and a char object



The String Class: Manipulating

Suppose the user types in ‘virAt’ and we want to output
“Virat”

o How would we access the content
Once a string object is read or made available

o We access the members of the object using the square

bracket syntax
o p[0] is the first character, it’s not p[1]
o Programmers start counting from zero not 1

We manipulate just as we would manipulate a character



Examples

#tinclude <string> // Needed to use the string class
string v = “abcdab”; // constructor

string w(v); // another constructor. w = v
v[2] = v[3]; //indexing allowed. v becomes “abddab”




Valid Characters in Name

e Suppose the user types in ‘vir+t’ and we want to output
“Virat”
o How would we check that it is not a valid name?

e The isalpha() construct in the package cctype



Demo



Valid Characters: Alternative

e Suppose the user types in ‘vir+t’ and we want to output
“Virat”
o How would we check that it is not a valid name?

e We are going to use the powerful “find” syntax



Examples

#tinclude <string> // Needed to use the string class

string v = “abcdab”; // constructor

inti=v.find(“ab”); //find occurrence of “ab” inv
// and return index

int j = v.find(“ab”,1); //find from index 1

cout <<i<<“, “<<j<<endl; // will print out 0, 4.

v.find_first_of(“cd”)
// find the first occurrence of any character of “cd” in v
// substring operation




Remarks

* If the find member function does not find the argument in the
receiver, then it returns a constant string::npos, which is a value
which cannot be a valid index

— You can determine whether the argument was found by
checking whether the returned index equals string::npos

e strings; s.size() or s.length() returns a value of type size t (a
redefinition of unsigned int)



Demo



Examples

#tinclude <string> // Needed to use the string class
string v = “abcdab”; // constructor
cout << v.substr(2) << v.substr(1,3) << endl;

// substring starting at v[2] (“cdab”)

// Substring starting at v[1] of length 3 (“bcd”)
string longerString =v + * “ + World // the + operator




