
CS 101:
Computer Programming and

Utilization

About These Slides

• Based on Chapter 21 of the book

An Introduction to Programming Through C++

by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade

− First update by Sunita Sarawagi

A programming problem
• Design a scheme to store names of the

students in your class
• ”Natural solution”: Use a 2d array of characters,

store ith name in ith row.
– Rowsize will have to be as large as length of

longest name.
– Most rows will be empty. Inefficient use of memory.

• Is there a better scheme?
• Another similar problem: how to store polygons

with possibly different number of sides.

Storing variable length entities

• C++ standard library (Chapter 22) contains
very safe, convenient classes for this.
– Sufficient to store names, polygons.
– Must use these wherever possible.

• This chapter: how to build classes like
those in Ch 22
– “Understand the magic”

Outline

• Heap memory
– Basic primitives for allocation and deallocation

• Issues in managing heap memory
• Detailed Example

– A class for representing text strings.
– Use in storing names of students.

What you already know: the
activation frame memory

• The main mechanism we have studied for
defining variables: variable definitions given
in the text of the main program, or of some
function.

• Memory for the variables is allocated in the
activation frame of the function when control
reaches the variable definition statement.

• When control exits the block containing the
definition, the memory is freed, or
deallocated.

The Heap memory
• In C++ there is a separate, reserved region of

memory called the Heap memory, or just the
Heap.

• It is possible to explicitly request that memory
for a certain variable be allocated in the heap.

• When there is no more use for the variable
thus allocated, the program must explicitly
return the memory to the heap. After the
memory is returned, it can be used to satisfy
other memory allocation requests in the
future.

Example: A variable on the heap to
store a Book object

class Book{
 char title[100];
 double price;
};
Book *bptr;
bptr = new Book;
bptr->price = 399;
…
delete bptr;

• new: asks for heap memory
• Must be followed by type

name T
• Memory for storing one

variable of type T is
allocated on the heap.

• new T returns address of
allocated memory.

• Now use the memory!
• After the memory is no

longer needed, it must be
returned by executing
delete.

• new and delete are
reserved words, also
operators.

What happens behind the scenes
for new and delete

• Some bookkeeping goes on behind the
scenes to keep track of which part of the
heap is currently in use.

• What you are guaranteed: in response to a
new operation, you will get memory that is
not currently allocated to another request.

• The same region of memory can be allocated
to two requests, but only if the first request
releases it (delete) before the second
request is made.

Allocating arrays on the heap

char* cptr;
cptr = new char[10];
// allocates array of length 10.
// array can be accessed as usual
// cptr[0],…,cptr[9]

delete[] cptr;
// When not needed.
// Note: delete[] not delete

Storing many names
char *names[100];
// array of pointers to char
for(int i=0; i<100; i++){
 char buffer[80]; cin >> buffer;
 int L = length(buffer)+1;
 // string length. +1 for ‘\0’.
 names[i] = new char[L];
 // copy buffer into names[i];
}
• The jth character of the ith name can be accessed

by writing names[i][j] as you might expect.

Remarks

• Allocation and deallocation is simple and
convenient.

• However, experience shows that
managing heap memory is tricky and
prone to errors.
– forgetting to deallocate (delete) memory.
– Referring to memory that has been

deallocated. (“Dangling reference”)
– Destroying the only pointer to memory

allocated on the heap before it is deallocated
(“Memory Leak”)

Dangling reference
int* iptr;
iptr = new int;
*iptr = …;
delete iptr;
*iptr = ...; // dangling reference!
• In the last statement, iptr points to memory that

has been returned, and so should not be used.
• In particular, it might in general be allocated for

some other request.
• Here the error is obvious, but if there are many

intervening statements it may not be.

Memory Leak 1
int *iptr;
iptr = new int; // statement 1
iptr = new int; // statement 2
• Memory is allocated in statement 1, and its address,

say A, is stored in iptr. However, this address is
overwritten in statement 2.

• Memory allocated at address A cannot be used by the
program because we have destroyed the address.

• However, we did not return (delete) that memory
before destroying the address. So the heap allocation
functions think that it has been given to us.

• The memory at address A has become useless!
“Leaked”

Memory Leak 2
• {int *iptr;
• iptr = new int; // statement 1
• }
• Memory is allocated in statement 1, and its address,

say A, is stored in iptr.
• When control exits the block, then iptr is destroyed.
• Memory allocated in statement 1 cannot be used by

the program because we do not know the address any
longer.

• However, we did not return (delete) that memory
before destroying the address. So the heap allocation
functions think that it has been given to us.

• So the memory at address A has become unusable!

Simple strategy for preventing
memory leaks

• Suppose a certain pointer variable, ptr,
is the only variable that contains the
address of a variable allocated on the
heap.

• We must not store anything into ptr and
destroy its contents.

• When ptr is about to go out of scope,
(control exits the block in which ptr is
defined) we must execute delete ptr;

Simple strategy for preventing
dangling references

• Why we get a dangling reference:
• There are two pointers, say aptr and bptr

which point to the same variable on the heap.
• We execute delete aptr;
• Later we dereference bptr, not realizing the

memory it points to has been deallocated.
• Simple way to avoid this:
• Ensure that at all times, each variable on the heap

will be pointed to only by one pointer!
• More complex strategies are possible. See the

book.

Summary: Avoiding dangling
references and memory leaks

• Ensure each variable allocated on the heap is
pointed to by exactly one pointer at any time.

• If aptr points to a heap variable, then before
executing aptr = … execute delete aptr;

• If aptr points to a heap variable, and if control
is about to exit the block in which aptr is
defined, then execute delete aptr;

• We can automate this! Next.

A class for representing character
strings

• We would like to build a String class in
which we can store character strings of
arbitrary length, without worrying about
allocating memory, memory leaks,
dangling references.

• We should be able to create Strings,
pass them to functions, concatenate them,
search them, and so on.

A program we should be able to
write

int main(){
 String a, b, c;
 a = “pqr”;
 b = a;
 {
 String c = a + b;
 // concatenation
 c.print();
 }
 String d[2];
 d[0] = “xyz”;
 d[1] = d[0] + c;
 d[1].print();
}

• Our class should enable us to
write the program shown.

• Creation of string variables
• Assignment
• Concatenation
• Printing
• Declaring arrays
• All this requires memory

management, but that should
happen behind the scenes,
without memory leaks,
dangling pointers.

Basic ideas in designing
String

• We will store the string itself on the heap, while maintain a
pointer ptr to it inside our class.

• The string will be terminated using the null character ‘\0’.
• When no string is stored in our class, we will set ptr to NULL.
• NULL (=0) : standard convention, means pointer is invalid.
• NULL pointer different from NULL character.
• To avoid dangling references and memory leaks, we will

ensure that
– Each ptr will point to a distinct char array on the heap.
– Before we store anything into ptr, we will delete the variable it

points to.
– When any ptr is about to go out of scope, we will delete it.

• Other designs also possible – later.

The class definition
class String{
 char* ptr;
 String(){ // constructor
 ptr = NULL; // initially empty string
 }
 void print(){ // print function
 if(ptr != NULL)
 cout << ptr;
 else
 cout <<“NULL”;
 }
 // other member functions..
};

Assigning a character string constant
• We allowed a character string constant to be stored in

a String:
String a;
a = “pqr”;

• Thus, we must define member function operator=

• Character string constant is represented by a const
char* which points to the first character in the string.

• So we will define a member function operator=
taking a const char* as an argument.

What should happen for a = “pqr”;

• a.ptr must be set to point to a string on the heap
holding “pqr”.

• Why not set a.ptr to point to “pqr” directly?
– Member ptr must point to the heap memory. The

character string constant “pqr” may not be on the heap.
• a.ptr may already be pointing to some variable on

the heap.
– We are guaranteed that no other pointer points to that

variable, so we must delete a.ptr so that the
memory occupied by the variable is returned to the heap.

The code
String& operator=(const char* rhs){
 // release the memory that ptr already points to.
 delete ptr;

 // make a copy of rhs on the heap
 // allocate length(rhs) + 1 byte to store ‘\0’
 // Assume a length function defined in book
 ptr = new char[length(rhs)+1];

 // actually copy. Function scopy defined in book
 scopy(ptr, rhs);

 // We return a reference to the class to
 // allow chaining of assignments.
 return *this;
}

Assigning a String to another String

• We want to allow code such as
String a, b;
a = “pqr”;
b = a;

• The statement b = a; will cause a call
b.operator=(a) to be made.

• So we need a member function operator=
which takes a String as argument

The code
String& operator=(const String &rhs){

// We must allow self assignment.
// If a self assignment, do nothing.

 if(this == &rhs) return *this;

 // Call the previous "=" operator.
 *this = rhs.ptr;

 return *this;
}

The destructor
• The destructor gets called when a String

object goes out of scope, i.e. control exits the
block in which it is defined.

• Clearly, we must delete ptr to prevent
memory leaks.
~String(){
 delete ptr;
}

• Note that this will work even if ptr is NULL;
in such cases delete does nothing.

The copy constructor
• Copy constructor is like an assignment, except that

– we know that the destination object is also just being created, and
hence its ptr cannot be pointing to any heap variable.

– we don’t need to return anything.

• Hence this will be a simplified version of the assignment operator:

String(const String &rhs){
 ptr = new char[length(rhs.ptr)+1];
 scopy(ptr,rhs.ptr);
}

The [] operator
• To access the individual characters of the

character string, we define operator[].
char& operator[](int i){
 return ptr[i];
}

• We are returning a reference, so that we can
change characters also, i.e. write something like
String a; a = “pqr”;
a[0] = a[1];

• This should cause a to become “qqr”.

Concatenation: + operator
• We use a+b to mean the concatenation of a, b.

String operator+(const String &rhs) {
 String res; // result
 // Allocate space for the result.

 res.ptr = new char(length(ptr)+length(rhs.ptr)+1;

 // Copy the string in the receiver into the result.

 scopy(res.ptr, ptr);
 // Copy the string in rhs but start at length(ptr)
 // New version of scopy defined in book.

 scopy(res.ptr, rhs.ptr, length(ptr));

 return res;

}

Remarks

• We have given the definitions of all the
member functions needed to be able to
perform assignment, passing and
returning from functions, concatenation etc.
of String objects.

• The code given should be inserted into the
definition of String.

How to store many names: using
our string class

• Here is a program to read 100 names and store them.
int main(){
 String names[100];
 char buffer[80]
 for(int i=0; i<100; i++){

 cin.getline(buffer,80);
 names[i] = buffer;

 }
 // now use the array names[] however you want.
}
• If we use our class String, we do not need to mention

memory allocation, it happens automatically in the member
functions.

Concluding Remarks
• The class String that we have defined

performs memory allocation and deallocation
behind the scenes, automatically.

• From the point of the user, String variables
are similar to or as simple as int variables,
except that String variables can contain
character strings of arbitrary length rather than
integers.

• C++ Standard Library contains a class string
(all lowercase) which is a richer version of our
String class.

