
CS 101:
Computer Programming and

Utilization

About These Slides

• Based on Chapter 23 of the book

An Introduction to Programming Through C++

by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade

− First update by Sunita Sarawagi

Outline

• We would like to represent any object of
interest on a computer
– Road map of India
– Electrical circuit
– Mathematical expressions
– ...

• All of these are examples of “graphs”
• How to represent graphs on a computer

Graph
• Graph G = (V,E), where

– V = set of “vertices”
– E = set of “edges” = sets of pairs of vertices

• Example: Road map of India
– V = set of cities
– E = pairs of cities connected directly by a road

• Edges may be ordered or unordered
– Unordered: (u,v) and (v,u) both refer to the same edge
– Ordered: (u,v) and (v,u) refer to distinct edges

• Roadmap: edges are usually unordered
– However, we may choose ordered edges to indicate one-way

roads.
• Vertices/Edges may be associated with attributes

– Vertices in road map may have names, e.g. city names
– Edges in road map may have names and lengths

A graph of friends

• Vertices = persons, Edge: connect friends
• Unordered: friendship is mutual
• Example:

– V ={Harry, Hermione, Ron, Draco, Crabbe}
– E ={(Harry,Hermione), (Ron, Hermione),

(Harry, Ron), (Draco, Crabbe)}
Ha

R

He

C

D

Representing a person
• “For every entity you should have a class”

– What information would you put in each object
of the class?

struct Person{
 string name;
 string address;
 vector<Person*> friends;
};
• Person* or Person?

Representing the 5 persons

Person persons[5];
persons[0].name = “Harry”;
persons[1].name = “Hermione”;
persons[2].name = “Ron”;
persons[3].name = “Draco”;
persons[4].name = “Crabbe”;

• Now we have created the vertices

Adding the edges
• Harry, Hermione are friends, so we should do...
persons[0].friends.push_back(&persons[1]);
persons[1].friends.push_back(&persons[0]);
• We need to make entries for both.
• So we could instead have a function
void MF(Person &p, Person &q){
 p.friends.push_back(&q);
 q.friends.push_back(&p);
}
• So now we just call it for each friendship:
MF(persons[0],persons[1]);
MF(persons[1],persons[2]);
MF(persons[2],persons[0]);
MF(persons[3],persons[4]);

Exercise
• Read in the name of a person and print that

persons friends.
cin >> name;
for(int i=0; i<5; i++)
 if(name == persons[i].name){
 for(size_t j=0;
 j<persons[i].friends.size();
 j++)
 cout << persons[i].friends[j]->
 name<<endl;
 }

A C++11 Enhancement
• Read in the name of a person and print that persons

friends.
cin >> name;
for(int i=0; i<5; i++)
 if(name == persons[i].name){
 // fp is of type (Person * &) == auto
 for(auto fp : persons[i].friends)
 cout << fp->name << endl;
}
• “Range based loop”: for(type id : container){..}
• Block executed for all elements id of the container
• vectors, maps, are containers

Another enhancement: can we
avoid the search completely?

map<string,vector<string> > friends;
friends["Harry"].push_back("Hermione");
friends["Hermione"].push_back("Harry");
...

// Print friends of all persons
for(auto p : friends){
 cout << p.first <<": ";
 for(auto f : p.second) cout << f <<' ';
 cout << endl;
}

What if edges have attributes?

• Suppose friendships have ”intensity”
• Solution 1:
struct Person{
 string name;
 vector<Person*> friends;
 vector<double> intensity;
};

Solution 2
struct EdgeData{
 double intensity;
 double duration;
};
struct Person{
 string name;
 vector<Person*> friends;
 vector<EdgeData*> edgedata;
};
void makefriends{Person &p, Person &q, EdgeData *e){
 p.friends.push_back(&q); p.edgedata.push_back(e);
 q.friends.push_back(&p); q.edgedata.push_back(e);
}

Remarks
• Solution 1 stores two copies of intensity – in

each of the two Person objects
• Solution 2 stores one copy; each Person

object has a pointer to it.
– Will require less memory if there is a lot of edge

data
– If there are multiple copies of the same

information we are always worried about updating
both copies consistently – source of bugs.

• Vertex data and edge data can both be on
the heap if needed.

Adjacency Matrix
Representation

struct VertexData{ string name;};
struct EdgeData{
 bool valid;
 double intensity, duration;
};
VertexData v[nVertices];
EdgeData e[nVertices][nVertices];
• If there is an edge from vertex i to vertex j, then set

– e[i][j].valid = true, e[i][j].intensity = ...
• If no edge then set

– e[i][j].valid = false;
• Many variations possible. See book.

Remarks

• For graph with V vertices and E edges
– Adjacency list uses: O(V+E) memory
– Adjacency matrix uses: O(V2) memory
– Adjacency list is better if graph has few edges.

Announcements

• Thursday graded lab.
• Cribs: empty, negative marks for needless

cribs.
• Help session.

Example Graph Queries
• Check if x and y are direct friends.

map<string,vector<string> > friends;
cin >> x >> y;
bool xy_friends = false;
for (string f : friends[x]) {

if (f == y) {
xy_friends = true;
break;

}
}

Example Graph Queries
• Find friend of friends, or the set of nodes reachable by one

hop on a graph.

map<string,vector<string> > friends;
cin >> query;
map<string,int> friendsOfFriends;
for (string f : friends[query]) {
 for (string g : friends[f]) {

friendOfFriends[g]++;
 }
}
for (auto s : friendOfFriends)
 cout << s.first << " ";

Example: Is there a path between
two nodes?

bool check_friends(string x, map<string,bool>&
visited, string y) {
 if (x == y) return true;

visited[x]=true;
for (string f : friends[x]) {
 if (visited.find(f) == visited.end()) {

if (check_friends(f, visited, y)) return true;
 }
}
return false;

}
main() {cin >> x >> y; map<string,bool> visited;
cout << check_friends(x,visited, y);}

Graph between different types of
nodes

• Web:
– Given pages, each with a url and a sequence

of words in it.
– Given a query word, find all page-urls that

contain it.
• View this as a graph with

– two types of nodes
• Page nodes
• Word nodes.

– Directed edges from pages to word that
contain it.

Indexing the documents
void loadPages(Web &web) {
 map<string, vector<string> > pages;
 map<string, vector<string>> words;
 for (int i = 0; i < num_pages; i++) {
 string url; int num_words;
 cin >> url >> num_words;
 while (--num_words) {
 string word; cin >> word;
 pages[url].push_back(word);
 words[word].push_back(url);
 }
 }
 while (true) {

cin >> query;
 for (auto u : words[query]) {

cout << u << " ";
 }
 }
}

