
CS 101:
Computer Programming and

Utilization

About These Slides

• Based on Chapter 11 of the book

An Introduction to Programming Through C++

by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade

− First update by Sunita Sarawagi

A different role for functions

• We said that a function should be created
if you find yourself writing code to perform
the same action at different places in the
program.

• However, functions have a different role
too: A function is an “organizational/logical
unit” of a program.

Physical units of code: files

• If several people write different functions
of the same program, it is more convenient
if each uses a different file.

• We need ways by which functions in one
file can call functions in other files

Outline

Functions and program organization
• The main program is a function
• How to split a program into many files

– Function declarations
– Separate compilation
– Header files

• Namespaces
• Using C++ without simplecpp

Splitting a program into many
files

• A program may contain several functions.
All need not be placed in the same file.

• If code in file F calls a function f, then
function f must be declared inside F,
textually before any call to it.

• A function definition is a declaration, but
there can be other ways to declare.

• Every function must be defined in just one
of the files that are used for a program.

Function declaration
• A function declaration is the definition without the body.

– The return type, name, parameter types and optionally parameter names.

• Example: declaration of gcd function:
int gcd(int m, int n);
int gcd(int, int); // also acceptable.

• The declaration tells the compiler that if gcd appears later,
it will be a function and take 2 ints as arguments.
– This helps the compiler to translate your program into machine language,

without needing to look up the definition of gcd.

• If a file calls a function but contains only a declaration of it;
it cannot be completely compiled to enable execution.
– Whatever is in it, is compiled, and the result is called an object module.
– To get an executable programs, all the object modules containing all called

functions must be linked together.

Separate compilation
• File gcd.cpp
int gcd(int m, int n){ … }

• File lcm.cpp
int gcd(int, int);
int lcm(int m, int n){

return m*n/gcd(m,n);}

• File main.cpp
int lcm(int, int);
int main(){
cout << lcm(36,24) << endl;
}

• function definitions
• function declarations
• As you can see, each file contains

a declaration of the function that is
called in it.

• You may compile and link all files
together by giving

s++ main.cpp lcm.cpp gcd.cpp
• You may compile each file

separately, e.g. by giving
s++ -c main.cpp
• -c will ask compiler to produce

main.o (object module).
• Object modules can be linked

together to get an executable by
typing

s++ main.o lcm.o gcd.o

Header files
• Tedious to remember what declaration to

include in each file.
• Instead, put all declarations in a header file,

and “include” the header file into every file.
• Header files have suffix .h or .hpp., or no

suffix.
• The directive “#include filename” is

used to include files. It is simply replaced
by the content of the named file.

• OK to declare functions that do not get
used.

• OK to have both a declaration and then
the definition of a function in the same file.

• If header file is mentioned in “ “, it is picked
up from the current directory.

• If it is mentioned in < >, it is picked up from
some standard place, e.g. simplecpp

• File gcdlcm.h
int gcd(int, int);
int lcm(int,int);

• File gcd.cpp
#include “gcdlcm.h”
int gcd(int m, int n){ … }

• File lcm.cpp
#include “gcdlcm.h”
int lcm(int m, int n){ … }

• File main.cpp
#include <simplecpp>
#include “gcdlcm.h”
int main(){
cout << lcm(36,24) << endl;
}

Header files for classes

• Typically, separate file for each
large class with the same
name.

• Header file declares the entire
class but skips definition of
large functions that are
declared in a .cpp file

• Includes similar to other
header files.

• File queue.hpp
class Queue {
 private:
 // declare private data members.
 public:
 // declare, not define large functions
 bool insert(int driver);
 ...
 }
• File queue.cpp
 bool Queue::insert(int driver) {...}
 ...
• File main.cpp
#include "queue.hpp"
int main() {
 Queue q; }

Concluding Remarks

• Functions are building blocks of programs.
• Functions can be put into many files,

provided each file contains a declaration
before the use.

• Declarations go into header files.
• Details discussed in the book.

