
CS 101:
Computer Programming and

Utilization

About These Slides

• Based on Chapter 9 of the book
An Introduction to Programming Through C++
by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade
– First update by Varsha Apte
– Second update by Uday Khedker
– Third update by Sunita Sarawagi

Can We Define New Commands?
• We already have many commands, e.g

− sqrt(x) evaluates to the square root of x

− forward(d) moves the turtle forward d pixels

• Can we define new commands? e.g

− gcd(m,n) should evaluate to the GCD of m,n

− dash(d) should move the turtle forward, but draw
dashes as it moves rather than a continuous line

• Function: official name for command

Outline

• Examples of defining and using functions

• How to define a function in general

• How a function executes

• Contract view of functions

• Passing parameters by reference

Why Functions?
Write a program that prints the GCD
of 36, 24, and of 99, 47
Using what you already know:

Make 2 copies of code to find
GCD. Use the first copy to find
the GCD of 36, 24 Use the
second copy to find the GCD of
99, 47

Duplicating code is not good
May make mistakes in copying.
What if we need the GCD at 10
places in the program?
This is inelegant. Ideally, you
should not have to state anything
more than once

main_program{
 int m=36, n=24;
 while(m % n != 0){

int r = m%n;
m = n;
n = r;

 }
 cout << n << endl;
 m=99; n=47;
 while(m % n != 0){

int r = m%n;
m = n;
n = r;

 }
 cout << n << endl;
}

Using a Function
(exactly how it works, later)

• A complete program
 = function definitions
 + main program
• Function definition:

information about
− function name
− how it is to be called
− what it computes
− what it returns

• Main program:
calls or invokes functions
− gcd(a,b) : call/invocation
− gcd(99,c) : another call
− Values supplied for each

call: arguments or
parameters to the call

int gcd(int m, int n){
 while(m % n != 0){

int r = m%n;
m = n;
n = r;

 }
 return n;
}

main_program{
 int a=36,b=24, c=47;
 cout <<gcd(a,b) << endl;
 cout <<gcd(99,c)<< endl;
}

Form of Function Definitions
return-type name-of-function (
 parameter1-type parameter1-name,
 parameter2-type parameter2-name,
 …)
{ function-body }

• return-type: the type of the value returned by the function,
e.g. int

 Some functions may not return anything
 (discussed later)
• name-of-function: e.g. gcd
• parameter: variables that to hold the values of the

arguments to the function. m,n in gcd
• function-body: code that will get executed

Function Execution
int gcd(int m, int n) {
 while(m % n != 0){

int r = m%n;
m = n;
n = r;

 }
 return n;
}
main_program{
 int a=36,b=24;
 cout << gcd(a,b) << endl;
 cout << gcd(99,47)<< endl;
}

• Each function has a
separate data space
(independent scope)

• These data spaces are
arranged in a data
structure called stack

• Imagine the data spaces
as data books and stacked
up one on the other

• The book on the top of the
stack is the one we can
access

 Last-In-First-Out (LIFO)

Function Execution

• Data space of a function is
also called an activation
frame (or activation
record)

int gcd(int m, int n) {
 while(m % n != 0){

int r = m%n;
m = n;
n = r;

 }
 return n;
}
main_program{
 int a=36,b=24;
 cout << gcd(a,b) << endl;
 cout << gcd(99,47)<< endl;
}

m = 36, n=24
Activation frame of gcd

a=36, b =24
Activation frame of main

copy n
back

copy values of a and b
into m and n store n in a

return value
area

(contd.)

• Execution of the called function ends when return
statement is encountered

• Value following the keyword return is copied back to
the calling program, to be used in place of the
expression gcd(…,…)

• Activation frame of function is destroyed, i.e. memory
reserved for it is taken back

• main_program resumes execution

Function Execution

• Activation frame: area in
memory where function
variables are stored

int gcd(int m, int n) {
 while(m % n != 0){

int r = m%n;
m = n;
n = r;

 }
 return n;
}
main_program{
 int a=36,b=24;
 cout << gcd(a,b) << endl;
 cout << gcd(99,47)<< endl;
} a=36, b =24 returned value of n

Activation frame of main

gcd activation frame is destroyed

Function Execution
int gcd(int m, int n) {
 while(m % n != 0){

int r = m%n;
m = n;
n = r;

 }
 return n;
}
main_program{
 int a=36,b=24;
 cout << gcd(a,b) << endl;
 cout << gcd(99,47)<< endl;
}

How A Function Executes

1. main_program executes and reaches gcd(36,24)
2. main_program suspends
3. Preparations made to run subprogram gcd:

• Area allocated in memory where gcd will have its
variables. activation frame

• Variables corresponding to parameters are created in
activation frame

• Values of arguments are copied from activation frame
of main_program to that of gcd. This is termed
passing arguments by value

4. Execution of function-body starts

Remarks
• Set of variables in calling program e.g. main_program is

completely disjoint from the set in called function, e.g. gcd
• Both may contain same name. Calling program will

reference the variables in its activation frame, and called
program in its activation frame

• New variables can be created in called function
• Arguments to calls/invocations can be expressions, which

are first evaluated before called function executes
• Functions can be called while executing functions
• A declaration of function must appear before its call

Function To Compute LCM

We can compute the least common multiple of two

numbers m, n using the identity

 LCM(m,n) = m*n/GCD(m,n)

int lcm(int m, int n){

 return m*n/gcd(m,n);

}

lcm calls gcd.

Program To Find LCM Using Functions
gcd, lcm

int gcd(int m, int n)
{ …}
int lcm(int m, int n)
{
 return m*n/gcd(m,n);
}
main_program{
cout << lcm(50,75);
}

int lcm(int m, int n);
main_program{
 cout << lcm(50,75);
}
int gcd(int m, int n)
{ …}
int lcm(int m, int n)
{
 return m*n/gcd(m,n);
}

Function definitions appear
before their calls

Function declarations
appear before their calls

Execution
• main_program starts executing
• main_program suspends when the call lcm(..) is encountered
• Activation frame created for lcm
• lcm starts executing after 50, 75 copied to m,n call to gcd

encountered. lcm suspends
• Activation frame created for gcd
• Execution of gcd starts after copying arguments 50, 75 to m,n

of gcd.
• gcd executes. Will returns 25 as result
• Result copied into activation frame of lcm, to replace call to

gcd
• Activation frame of gcd destroyed
• lcm continues execution using result. m*n/gcd(m,n) =

50*75/25 = 150 computed
• 150 returned to main_program, to replace call to lcm
• Activation frame of gcd destroyed
• main_program resumes and prints 15

Execution of our Program

int gcd(int m, int n)
{ …}
int lcm(int m, int n)
{
 return m*n/gcd(m,n);
}
main_program{
cout << lcm(50,75);
}

A Function to Draw Dashes
void dash(int d){

while(d>10){
forward(10); penUp(); d -= 10;
if(d<10) break;
forward(10); penDown(); d -= 10;

}
forward(d); penDown();
return;

}
main_program{

turtleSim();
repeat(4){dash(100); right(90);}

}

Remarks

• Dash does not return a value, so its return type is void

• The return statement used in the body does not have a

value after the key word return

• Exercise: write an invariant for the loop in dash

Contract View Of Functions

• Function : piece of code which takes the responsibility of
getting something done

• Specification : what the function is supposed to do Typical
form: If the arguments satisfy certain properties, then a
certain value will be returned, or a certain action will
happen

 certain properties = preconditions
• Example: gcd : If positive integers are given as arguments,

then their GCD will be returned
• If preconditions are not satisfied, nothing is promised

Contract View of Functions (contd.)

• Function = contract between the programmer who wrote
the function, and other programmers who use it

• Programmer who uses the function trusts the function
writer

• Programmer who wrote the function does not care which
program uses it

• Analogous to giving cloth to tailor. Tailor promises to
give you a shirt if the cloth is good. Tailor does not care
who wears the shirt, wearer does not care how it was
stitched

Contract View of Functions (contd.)

Postconditions: After the function finishes execution, does it
modify the state of the program?
Example: After dash finishes its execution it might always
leave the pen up (not true for the code given earlier)
Exercise: Modify the code of dash to ensure that the pen is
up at the end
Post conditions must also be mentioned in the specification
Writing clear specifications is very important

Some Shortcomings

Using what we saw, it is not possible to write functions to

do the following:

• A function that exchanges the values of two variables

• A function that returns not just one value as the result,

but several. For example, we might want a function to

return polar coordinates given Cartesian coordinates

Exchanging The Values of Two
Variables, Attempt 1

void exchange(int a, int
b){

int temp = a;
a = b; b = temp;
return;

}
main_program{

int a=1, b=2;
exchange(a,b);
cout << a <<‘ ‘<<

 b << endl;
}

• Does not work. 1, 2 will
get printed

• When exchange is called,
1, 2 are placed into m, n

• Execution of exchange
exchanges values of m,n

• But the change in m,n is
not reflected in the values
of a,b of main_program

Exchanging The Values of Two
Variables, Attempt 1

void exchange(int a, int
b){

int temp = a;
a = b; b = temp;
return;

}
main_program{

int a=1, b=2;
exchange(a,b);
cout << a <<‘ ‘<<

 b << endl;
}

Reference Parameters

void exchange(int &m, int
&n){

int temp = m;
m = n; n = temp;
return;

}
main_program{

int a=1, b=2;
exchange(a,b);
cout << a <<‘ ‘<<

 b << endl;
}

• "&" before the name of the
parameter: Says, do not
allocate space for this
parameter, but instead just
use the variable from the
calling program

• With this, when function
changes m,n it is really
changing a,b

• Such parameters are called
reference parameters

Remark

If a certain parameter is a reference parameter, then the

corresponding argument is said to be passed by reference

Cartesian to Polar
void CtoP(double x, double y, double &radius, double
&theta){

radius = sqrt(x*x + y*y);
theta = atan2(y, x); //arctan

return;
}
main_program{

double x=1, y=1, r, theta;
CtoP(x,y,r,theta);
cout << r <<‘ ‘<< theta << endl;

}
// Because r, theta in CtoP are reference parameters,
// changing them changes the value of r, theta in
// the main program.
// Hence will print sqrt(2) and pi/4 (45 degrees)

Pointers

• A pointer is a variable that can store addresses
– The number assigned to a byte (different from what

is stored in the byte) is said to be its address.
– If a computer has B bytes of memory ---- address

will range from 0 to B-1.
• What we accomplished using reference

variables can also be accomplished using
pointers.

• Pointers will also be useful elsewhere.

How to find the address of a
variable

• The operator & can be used to get the address
of a variable. (The same & is used to mark
reference parameters; but the meaning is
different)

 int t;
 cout << &t << endl;
• This prints the address of variable t.
• Addresses are in hexadecimal (16) radix, i.e.

they will consist of a sequence of hexadecimal
digits prefixed by “0x”. Note: hexadecimal digits:
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

Variables that can store addresses

• To create a variable v in which you can store addresses
of variables of type int you write:

 int *v; // read as “int star v”
• The * is not multiplication. Think of it as (int*) v;

where int* means the type: “address of int”.
 int p;
 v = &p;
 cout << v <<‘ ‘<< &p << endl;
 // both print same
• In general, to create a variable w to store addresses of

variables of type T, write:
 T* w;

The dereferencing operator *
• If v contains the address of p, then we can

get to p by writing *v.
int *v;
int p;
v = &p;
*v = 10; // as good as p = 10.
• Think of * as the inverse of &.
• &p : the address of the variable p
• *v : the variable whose address is in v

Pointers in functions
void CtoP(double x,
double y, double *pr,
double *ptheta){
 *pr = sqrt(x*x +
y*y);
 *ptheta = atan2(x,y);
 return;
}
main_program{
 double r, theta;
 CtoP(1,1,&r,&theta);
 cout << r <<‘ ‘
 << theta <<
endl;
}

• main_program calls CtoP,
supplying &r, &theta as
third and fourth arguments.

• This is acceptable because
corresponding parameters
have type double*.

• The addresses are copied
into pr, ptheta of CtoP.

• *pr means the variable
whose address is in pr, in
other words, the variable r
of main_program.

• Thus CtoP changes the
variables of
main_program.

• Thus √2 = 1.41 and π/4 =
0.79 are printed.

Remarks
• You cannot store an address of an int variable into an
int variable, nor store an int into a variable of type
int*.
int *v, p;
v = p; // not allowed
p = v; // not allowed

• For now, assume that the only operations you can
perform on a variable of type T* are
– dereference it,
– store into it a value &v where v is of type T,
– store it into another variable of type T*
– pass it to a function as an argument, provided

corresponding parameter is of type T*

Concluding Remarks

• Functions allow us to divide the program into smaller
parts such that each part deals with a particular
functionality

• Apart from separation of computations, functions also
allow separation of data spaces for computations

• This separation of concerns is a major help in
understanding programs

• Functions can be seen as another control flow
mechanism (apart from sequence, selection, and
iteration)

• Function calls follow the LIFO (Last-In-First-Out) policy of
execution of nested calls

