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About These Slides

• Based on Chapter 10 and Chapter 16 of the book 
An Introduction to Programming Through C++ 
by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade
– First update by Varsha Apte
– Second update by Uday Khedker
– Third update by Sunita Sarawagi



Can a Function Call Itself?

int f(int n){
   … 
   int z = f(n-1); 
   …
}
main_program{
  int z = f(15);
}

• Allowed by execution 
mechanism

• main_program executes, 
calls f(15)

• Activation Frame (AF) 
created for f(15)

• f executes, calls f(14)
• AF created for f(14)
• Continues in this manner, 

with AFs created for f(13), 
f(12) and so on, endlessly



Activation Frames Keep Getting 
Created in Stack Memory 

Activation 
frame of 
main

Activation 
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f(14)
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Activation 
frame of 
f(15)



Another Function that Calls Itself

int f(int n){
   … 
   if(n > 13) 
      z = f(n-1); 
   …
}
main_program{
  int w = f(15);
}

• main_program executes, calls f(15)
• AF created for f(15)
• f(15) executes, calls f(14)
• AF created for f(14)
• f(14) executes, calls f(13)
• AF created for f(13)
• f(13) executes, check n>13 fails.  

some result returned
• Result received in f(14)
• f(14) continues and in turn returns 

result to f(15)
• f(15) continues, returns result to 

main_program
• main_program continues and 

finished



Activation Frames Keep Getting 
Created in Stack Memory 

Activation 
frame of 
main

Activation 
frame of 
f(14)

Activation 
frame of …

Activation 
frame of 
f(15)

and destroyed as the functions exit



Recursion

Function called from its own body

OK if we eventually get to a call which does not call itself

Then that call will return

Previous call will return…

But could it be useful?



Outline

• GCD Algorithm using recursion

• A tree drawing algorithm using recursion



Euclid’s Theorem on GCD

//If m % n == 0, then 
//            GCD(m, n) = n, 
// else GCD(m,n) = GCD(n, m % n)

int gcd(int m, int n){
   if (m % n == 0) return n;
   else return gcd(n, m % n);
}
main_program{

cout << gcd(205,123) << endl;
}

Will this work?



Execution of Recursive gcd

gcd(205, 123)

return gcd(123, 82)

return gcd(82, 41)

return 41

41

41

41



Euclid’s Theorem on GCD

int gcd(int m, int n){
   if (m % n == 0) return n;
   else return gcd(n, m % n);
}

main_program{
cout 
<< gcd(205,123) 
<< endl;
}

Activation frame 
of main created

Activation 
frame of gcd 
(205, 123) 
created

Execute
this

Activation 
frame of gcd 
(123, 82) 
created

Execute
this

Activation 
frame of gcd 
(82, 41) 
created

return 41return 41return 41



Recursion Vs. Iteration
• Recursion allows multiple distinct data spaces for 

different executions of a function body
– Data spaces are live simultaneously
– Creation and destruction follows LIFO policy

• Iteration uses a single data space for different executions 
of a loop body
– Either the same data space is shared or one data 

space is destroyed before the next one is created
• Iteration is guaranteed to be simulated by recursion but 

not vice-versa



Correctness of Recursive gcd

We prove the correctness by indunction on j  
    For a given value of j, gcd(i,j) correctly   
    computes gcd(i,j) for all value of i
    We prove this for all values of j by induction

• Base case: j=1. gcd(i,1) returns 1 for all i
Obviously correct

• Inductive hypothesis: Assume the correctness of gcd(i,j) 
for a some j

• Inductive step: Show that gcd(i,j+1) computes the correct 
value



Correctness of Recursive gcd
Inductive Step: Show that gcd(i,j+1) computes the correct 
value, assuming that gcd(i,j) is correct

• If j+1 divides i, then the result is j+1
Hence correct

• If j+1 does not divide i, then gcd(i,j+1) returns the result of 
calling gcd(j, i%(j+1)
– i%(j+1) can at most be equal to j
– By the inductive hypothesis, gcd(j, i%(j+1) computes 

the correct value
– Hence gcd(i, j+1) computes the correct value



Remarks

• The proof of recursive gcd is really the same as that of 
iterative gcd, but it appears more compact

• This is because in iterative gcd, we had to speak about 
“initial value of m,n”, “value at the beginning of the 
iteration” and so on

• In general recursive algorithms are shorter than 
corresponding iterative algorithms (if any), and the proof 
is also more compact, though same in spirit



Factorial Function
• Iterative factorial function

int fact(int n) {
int res=1;
for (int i=1; i<=n; i++) 

res = res*i;
     return res;
}

• Recursive factorial function
int fact(int n) {

if (n<=0) return 1;
else return n*fact(n-1);

}



Fibonacci Function
• Iterative fibonacci function: 

int fib(int n){
    if (n <= 0) return 0;
    if (n == 1) return 1;    
    int n_2 = 0, n_1 = 1, result = 0;      
    for (int i = 2; i <= n; i++) {
        result = n_1 + n_2;
        n_2 = n_1;
        n_1 = result;
    }
    return result;
}



Fibonacci Function

• Definition:
    fib(0) = 0
    fib(1) = 1
    fib(n) = fib(n-1) + fib(n+1),    n > 1

• Recursive fibonacci function: 

int fib(int n){
    if (n <= 0) return 0;
    if (n == 1) return 1;    
    return fib(n-1) + fib(n-2);
}



An Important Application of Recursion: 
Processing Trees

Botanical trees…
Organization Tree
Expression Tree
Search Tree: later

In this chapter we only consider how to draw trees
Must understand the structure of trees 
Structure will be relevant to more complex algorithms



Organization Tree
(Typically “grows” Downwards)

President

VP VP

Director Director Director Director

Manager Manager



Tree Representing 
((57*123)+329)*(358/32)

President

 +  /

      *     329     358       32

      57       123

*



A Botanical Tree Drawn Using the 
Turtle in Simplecpp



A More Stylized Tree Drawn Using 
simplecpp



1 Stylized Tree =
 2 Small Stylized Trees + V

When a part of an object is of the same type as the 
whole, the object is said to have a recursive structure.



Drawing The Stylized Tree

Parts:
Root
Left branch,   Left subtree
Right branch, Right subtree

Number of levels: number of times the tree has branched 
going from the root to any leaf.
Number of levels in tree shown = 5
Number of levels in subtrees of tree: 4



Drawing The Stylized Tree
General idea:
To draw an L level tree:

if L > 0{
Draw the left branch, and a Level L-1 on top of  

     it.
Draw the right branch, and a Level L-1 tree on 

     top of it.
}

We must give the coordinates where the lines are to be 
drawn

Say root is to be drawn at (rx,ry)
Total height of drawing is h.
Total width of drawing is w.

We should then figure out where the roots of the subtrees 
will be.



Basic Primitive: 

Drawing a line from (x1,y1) to (x2,y2)

Drawing The Stylized Tree



(rx,ry)

W

H

H/L

(rx-W/4,ry-H/L) (rx+W/4,ry-H/L)

Drawing The Stylized Tree



Drawing The Stylized Tree

Basic Primitive Required: Drawing a line

• Create a named shape with type Line

Line line_name(x1,y1,x2,y2);

• Draw the shape

line_name.imprint();



void tree(int L, double rx, double ry, 
                 double H, double W) {
  if(L>0){
    Line left(rx, ry, rx-W/4, ry-H/L);     // line called left
    Line right(rx, ry, rx+W/4, ry-H/L); // line called right
    right.imprint();              // Draw the line called right
    left.imprint();                // Draw the line called left
    tree(L-1, rx-W/4, ry-H/L, H-H/L, W/2); // left subtree
    tree(L-1, rx+W/4, ry-H/L, H-H/L, W/2);// right subtree
  }
}

Drawing The Stylized Tree



More fun drawings using 
recursion



Fractals: self-similar patterns

Level 1 Level 2 Level 3

Level 4



Code
void drawPattern(double side,int level){
     if(level>3) return;
     repeat(6){
          forward(side);
          drawPattern(side/3,level+1);
          right(180);
          forward(side);
          left(120);
      }
}
main_program{
       turtleSim();
       left(90);
       drawPattern(150,0);
}



Arrays and Recursion

• Recursion is very useful for designing 
algorithms on sequences
– Sequences will be stored in arrays

• Topics
– Binary Search
– Merge Sort



Searching an array
• Input: An array A of length n storing numbers, number x (called 

“key”)
• Output: true if x is present in A, false otherwise.
• Natural algorithm: scan through the array and return true if found.

for(int i=0; i<n; i++){
if(A[i] == x) return true;

}
return false;

• Time consuming: we will scan through entire array if the element is 
not present, and on the average through half the array if it is present.

• Can we possibly do all this with fewer operations?



Searching a sorted array

• sorted array: (non decreasing order)
A[0] ≤ A[1] ≤ … ≤ A[n-1]
• sorted array: (non increasing order)
A[0] ≥ A[1] ≥ … ≥ A[n-1]
• How do we search in a sorted array (non 

increasing or non decreasing)?
– Does the sortedness help in searching?



Searching a non decreasing sorted 
array

• Assume array is sorted in nondecreasing order.
• Key idea for reducing the number of comparisons: First 

compare x with the “middle” element A[n/2] of the array.
• Suppose x < A[n/2]: Because A is sorted, A[n/2..n-1] 

will also have elements larger than x.
– x if present will be present only in A[0..n/2-1].
– So in the rest of the algorithm we will only search first half of A.

• Suppose x >= A[n/2]: 
– x if present will be present in A[n/2..n-1]
– x may be present in first half too, but if it is present it will be 

present in second half too.
– So in the rest of the algorithm we will only search second half.

• How to search the “halves”?
– Recurse!



Plan
• We will write a function Bsearch which will search 

a region of an array instead of the entire array.
• Region: specified using 2 numbers: starting index 
S, length of region L

• When L == 1, we are searching a length 1 array.
– So check if that element, A[S] == x.

• Otherwise, compare x to the “middle” element of 
A[S..S+L-1]
– Middle element:  A[S + L/2]

• Algorithm is called “Binary search”, because size 
of the region to be searched gets halved.



The code
bool Bsearch(int A[], int S, int L, int x)
// Search in A[S..S+L-1]
{

if(L == 1) return A[S] == x;
int H = L/2;

    if (x == A[S+H]) return true;
if(x < A[S+H]) return Bsearch(A, S,   H,   x);
else           return Bsearch(A, S+H, L-H, x);

} 

int main(){
  int A[8]={-1, 2, 2, 4, 10, 12, 30, 30};
  cout << Bsearch(A,0,8,11) << endl;
  // searches for 11.
}



How does the algorithm execute?
• A = {-1, 2, 2, 4, 10, 12, 30, 30}
• First call: Bsearch(A, 0, 8, 11)

– comparison: 11 < A[0+8/2] = A[4] = 10
– Is false.

• Second call: Bsearch(A, 4, 4, 11)
– comparison: 11 < A[4+4/2] = A[6] = 30
– Is true.

• Third call: Bsearch(A, 4, 2, 11)
– comparison: 11 < A[4+2/2] = A[5] = 12
– Is true.

• Fourth call: Bsearch(A, 4, 1, 11)
– Base case.  Return 11 == A[4].  So false.



Proof of termination

• Will the algorithm always terminate?
• Parameter L always decreases, unless it is 

already 1.
– Next call is with L/2 or L-L/2.
– So it will eventually become 1.
– So the base case will be reached.



Remarks

• If you are likely to search an array 
frequently, it is useful to first sort it. The 
time to sort the array will be be 
compensated by the time saved in 
subsequent searches.

• How do you sort an array in the first place?  
Next.

• Binary search can be written without 
recursion.  Exercise.



Sorting

• Chapter 14 discusses a simple algorithm 
for sorting called Selection sort.

• Selection can require n2 comparisons to 
sort n keys.

• Algorithms requiring fewer comparisons 
are known:  nlog n comparisons.

• One such algorithm is Merge sort.



Mergesort idea
To sort a long sequence:
• Break up the sequence into two small 

sequences.
• Sort each small sequence. (Recurse!)
• Somehow “merge” the sorted sequences into 

a single long sequence.
• Hope: “merging” sorted sequences is easier 

than sorting the large sequence.
• Our hope is correct, as we will see soon!



Example

• Suppose we want to sort the sequence
– 50, 29, 87, 23, 25, 7, 64

• Break it into two sequences.
– 50, 29, 87, 23 and 25, 7, 64.

• Sort both
– We get 23, 29, 50, 87 and 7, 25, 64.

• Merge
– Goal is to get 7, 23, 25, 29, 50, 64, 87.



Merge sort
void mergesort(int S[], int n){
// Sorts sequence S of length n.
 if(n==1) return;
 int U[n/2], V[n-n/2];
 for(int i=0; i<n/2; i++) U[i]=S[i];
 for(int i=0; i<n-n/2; i++) V[i]=S[i+n/2];
 mergesort(U,n/2);
 mergesort(V,n-n/2);
//”Merge” sorted U, V into S. 
 merge(U, n/2, V, n-n/2, S, n);
}



Merging two sorted sequences

• Think of a sorted sequence as a row of 
students, ordered shortest to tallest.

• We are given two such rows, U, V.
• We want to move students from both rows 

into a new row S, but it should still be in 
shortest to tallest order.



Merging
U: 23, 29, 50, 87.
V: 7, 25, 64.
S: 
• The smallest overall must move into S.  

Smallest overall can be smaller of smallest in 
U and smallest in V.

• So after movement we get:
U: 23, 29, 50, 87.
V: -, 25, 64.
S: 7.



What do we do next?
U: 23, 29, 50, 87.
V: -, 25, 64.
S: 7.
• Now we need to move the second smallest into S.
• Second smallest:

– smallest in U,V after smallest has moved out.
– smaller of the students currently at the head of U, V.

• So we get:
U: -, 29, 50, 87.
V: -, 25, 64.
S: 7, 23.



General strategy
• While both U, V contain a student:

– Move smallest from those at the head of U,V to the end of 
S.

• If only U contains students: move all to end of S.
• If only V contains students: move all to end of S.
• uf: index denoting which element of U  is currently at 

the front.
– U[0..uf-1] have moved out.

• vf: similarly for V.
• sb: index denoting where next element should move 

into S next  (sb: back of S)
– S[0..sb-1] contain elements that have moved in earlier.  



Merging two sequences
merge(int U[], int p, int V[], int q, int S[], int n){
 for(int uf=0, vf=0, sb=0; 
     sb < p + q; // while all elements havent moved
     sb++){
   if(uf<p && vf<q){  // both U,V are non empty
     if(U[uf] < V[vf]){
       S[sb] = U[uf]; uf++;
     } else{
       S[sb] = V[vf]; vf++;
     }
   } else if(uf < p){ // only U is non empty
      S[sb] = U[uf]; uf++;
   } else {            // only V is non empty
      S[sb] = V[vf]; vf++;
   }}}    



Concluding Remarks

• Recursion allows many programs to be expressed very 

compactly

• The idea that the solution of a large problem can be 

obtained from the solution of a similar problem of the 

same type, is very powerful

• Euclid probably used this idea to discover his GCD 

algorithm

• More examples in the book


