
CS 101:
Computer Programming and

Utilization

About These Slides

• Based on Chapter 10 and Chapter 16 of the book
An Introduction to Programming Through C++
by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade
– First update by Varsha Apte
– Second update by Uday Khedker
– Third update by Sunita Sarawagi

Can a Function Call Itself?

int f(int n){
 …
 int z = f(n-1);
 …
}
main_program{
 int z = f(15);
}

• Allowed by execution
mechanism

• main_program executes,
calls f(15)

• Activation Frame (AF)
created for f(15)

• f executes, calls f(14)
• AF created for f(14)
• Continues in this manner,

with AFs created for f(13),
f(12) and so on, endlessly

Activation Frames Keep Getting
Created in Stack Memory

Activation
frame of
main

Activation
frame of
f(14)

Activation
frame of …

Activation
frame of
f(15)

Another Function that Calls Itself

int f(int n){
 …
 if(n > 13)
 z = f(n-1);
 …
}
main_program{
 int w = f(15);
}

• main_program executes, calls f(15)
• AF created for f(15)
• f(15) executes, calls f(14)
• AF created for f(14)
• f(14) executes, calls f(13)
• AF created for f(13)
• f(13) executes, check n>13 fails.

some result returned
• Result received in f(14)
• f(14) continues and in turn returns

result to f(15)
• f(15) continues, returns result to

main_program
• main_program continues and

finished

Activation Frames Keep Getting
Created in Stack Memory

Activation
frame of
main

Activation
frame of
f(14)

Activation
frame of …

Activation
frame of
f(15)

and destroyed as the functions exit

Recursion

Function called from its own body

OK if we eventually get to a call which does not call itself

Then that call will return

Previous call will return…

But could it be useful?

Outline

• GCD Algorithm using recursion

• A tree drawing algorithm using recursion

Euclid’s Theorem on GCD

//If m % n == 0, then
// GCD(m, n) = n,
// else GCD(m,n) = GCD(n, m % n)

int gcd(int m, int n){
 if (m % n == 0) return n;
 else return gcd(n, m % n);
}
main_program{

cout << gcd(205,123) << endl;
}

Will this work?

Execution of Recursive gcd

gcd(205, 123)

return gcd(123, 82)

return gcd(82, 41)

return 41

41

41

41

Euclid’s Theorem on GCD

int gcd(int m, int n){
 if (m % n == 0) return n;
 else return gcd(n, m % n);
}

main_program{
cout
<< gcd(205,123)
<< endl;
}

Activation frame
of main created

Activation
frame of gcd
(205, 123)
created

Execute
this

Activation
frame of gcd
(123, 82)
created

Execute
this

Activation
frame of gcd
(82, 41)
created

return 41return 41return 41

Recursion Vs. Iteration
• Recursion allows multiple distinct data spaces for

different executions of a function body
– Data spaces are live simultaneously
– Creation and destruction follows LIFO policy

• Iteration uses a single data space for different executions
of a loop body
– Either the same data space is shared or one data

space is destroyed before the next one is created
• Iteration is guaranteed to be simulated by recursion but

not vice-versa

Correctness of Recursive gcd

We prove the correctness by indunction on j
 For a given value of j, gcd(i,j) correctly
 computes gcd(i,j) for all value of i
 We prove this for all values of j by induction

• Base case: j=1. gcd(i,1) returns 1 for all i
Obviously correct

• Inductive hypothesis: Assume the correctness of gcd(i,j)
for a some j

• Inductive step: Show that gcd(i,j+1) computes the correct
value

Correctness of Recursive gcd
Inductive Step: Show that gcd(i,j+1) computes the correct
value, assuming that gcd(i,j) is correct

• If j+1 divides i, then the result is j+1
Hence correct

• If j+1 does not divide i, then gcd(i,j+1) returns the result of
calling gcd(j, i%(j+1)
– i%(j+1) can at most be equal to j
– By the inductive hypothesis, gcd(j, i%(j+1) computes

the correct value
– Hence gcd(i, j+1) computes the correct value

Remarks

• The proof of recursive gcd is really the same as that of
iterative gcd, but it appears more compact

• This is because in iterative gcd, we had to speak about
“initial value of m,n”, “value at the beginning of the
iteration” and so on

• In general recursive algorithms are shorter than
corresponding iterative algorithms (if any), and the proof
is also more compact, though same in spirit

Factorial Function
• Iterative factorial function

int fact(int n) {
int res=1;
for (int i=1; i<=n; i++)

res = res*i;
 return res;
}

• Recursive factorial function
int fact(int n) {

if (n<=0) return 1;
else return n*fact(n-1);

}

Fibonacci Function
• Iterative fibonacci function:

int fib(int n){
 if (n <= 0) return 0;
 if (n == 1) return 1;
 int n_2 = 0, n_1 = 1, result = 0;
 for (int i = 2; i <= n; i++) {
 result = n_1 + n_2;
 n_2 = n_1;
 n_1 = result;
 }
 return result;
}

Fibonacci Function

• Definition:
 fib(0) = 0
 fib(1) = 1
 fib(n) = fib(n-1) + fib(n+1), n > 1

• Recursive fibonacci function:

int fib(int n){
 if (n <= 0) return 0;
 if (n == 1) return 1;
 return fib(n-1) + fib(n-2);
}

An Important Application of Recursion:
Processing Trees

Botanical trees…
Organization Tree
Expression Tree
Search Tree: later

In this chapter we only consider how to draw trees
Must understand the structure of trees
Structure will be relevant to more complex algorithms

Organization Tree
(Typically “grows” Downwards)

President

VP VP

Director Director Director Director

Manager Manager

Tree Representing
((57*123)+329)*(358/32)

President

 + /

 * 329 358 32

 57 123

*

A Botanical Tree Drawn Using the
Turtle in Simplecpp

A More Stylized Tree Drawn Using
simplecpp

1 Stylized Tree =
 2 Small Stylized Trees + V

When a part of an object is of the same type as the
whole, the object is said to have a recursive structure.

Drawing The Stylized Tree

Parts:
Root
Left branch, Left subtree
Right branch, Right subtree

Number of levels: number of times the tree has branched
going from the root to any leaf.
Number of levels in tree shown = 5
Number of levels in subtrees of tree: 4

Drawing The Stylized Tree
General idea:
To draw an L level tree:

if L > 0{
Draw the left branch, and a Level L-1 on top of

 it.
Draw the right branch, and a Level L-1 tree on

 top of it.
}

We must give the coordinates where the lines are to be
drawn

Say root is to be drawn at (rx,ry)
Total height of drawing is h.
Total width of drawing is w.

We should then figure out where the roots of the subtrees
will be.

Basic Primitive:

Drawing a line from (x1,y1) to (x2,y2)

Drawing The Stylized Tree

(rx,ry)

W

H

H/L

(rx-W/4,ry-H/L) (rx+W/4,ry-H/L)

Drawing The Stylized Tree

Drawing The Stylized Tree

Basic Primitive Required: Drawing a line

• Create a named shape with type Line

Line line_name(x1,y1,x2,y2);

• Draw the shape

line_name.imprint();

void tree(int L, double rx, double ry,
 double H, double W) {
 if(L>0){
 Line left(rx, ry, rx-W/4, ry-H/L); // line called left
 Line right(rx, ry, rx+W/4, ry-H/L); // line called right
 right.imprint(); // Draw the line called right
 left.imprint(); // Draw the line called left
 tree(L-1, rx-W/4, ry-H/L, H-H/L, W/2); // left subtree
 tree(L-1, rx+W/4, ry-H/L, H-H/L, W/2);// right subtree
 }
}

Drawing The Stylized Tree

More fun drawings using
recursion

Fractals: self-similar patterns

Level 1 Level 2 Level 3

Level 4

Code
void drawPattern(double side,int level){
 if(level>3) return;
 repeat(6){
 forward(side);
 drawPattern(side/3,level+1);
 right(180);
 forward(side);
 left(120);
 }
}
main_program{
 turtleSim();
 left(90);
 drawPattern(150,0);
}

Arrays and Recursion

• Recursion is very useful for designing
algorithms on sequences
– Sequences will be stored in arrays

• Topics
– Binary Search
– Merge Sort

Searching an array
• Input: An array A of length n storing numbers, number x (called

“key”)
• Output: true if x is present in A, false otherwise.
• Natural algorithm: scan through the array and return true if found.

for(int i=0; i<n; i++){
if(A[i] == x) return true;

}
return false;

• Time consuming: we will scan through entire array if the element is
not present, and on the average through half the array if it is present.

• Can we possibly do all this with fewer operations?

Searching a sorted array

• sorted array: (non decreasing order)
A[0] ≤ A[1] ≤ … ≤ A[n-1]
• sorted array: (non increasing order)
A[0] ≥ A[1] ≥ … ≥ A[n-1]
• How do we search in a sorted array (non

increasing or non decreasing)?
– Does the sortedness help in searching?

Searching a non decreasing sorted
array

• Assume array is sorted in nondecreasing order.
• Key idea for reducing the number of comparisons: First

compare x with the “middle” element A[n/2] of the array.
• Suppose x < A[n/2]: Because A is sorted, A[n/2..n-1]

will also have elements larger than x.
– x if present will be present only in A[0..n/2-1].
– So in the rest of the algorithm we will only search first half of A.

• Suppose x >= A[n/2]:
– x if present will be present in A[n/2..n-1]
– x may be present in first half too, but if it is present it will be

present in second half too.
– So in the rest of the algorithm we will only search second half.

• How to search the “halves”?
– Recurse!

Plan
• We will write a function Bsearch which will search

a region of an array instead of the entire array.
• Region: specified using 2 numbers: starting index
S, length of region L

• When L == 1, we are searching a length 1 array.
– So check if that element, A[S] == x.

• Otherwise, compare x to the “middle” element of
A[S..S+L-1]
– Middle element: A[S + L/2]

• Algorithm is called “Binary search”, because size
of the region to be searched gets halved.

The code
bool Bsearch(int A[], int S, int L, int x)
// Search in A[S..S+L-1]
{

if(L == 1) return A[S] == x;
int H = L/2;

 if (x == A[S+H]) return true;
if(x < A[S+H]) return Bsearch(A, S, H, x);
else return Bsearch(A, S+H, L-H, x);

}

int main(){
 int A[8]={-1, 2, 2, 4, 10, 12, 30, 30};
 cout << Bsearch(A,0,8,11) << endl;
 // searches for 11.
}

How does the algorithm execute?
• A = {-1, 2, 2, 4, 10, 12, 30, 30}
• First call: Bsearch(A, 0, 8, 11)

– comparison: 11 < A[0+8/2] = A[4] = 10
– Is false.

• Second call: Bsearch(A, 4, 4, 11)
– comparison: 11 < A[4+4/2] = A[6] = 30
– Is true.

• Third call: Bsearch(A, 4, 2, 11)
– comparison: 11 < A[4+2/2] = A[5] = 12
– Is true.

• Fourth call: Bsearch(A, 4, 1, 11)
– Base case. Return 11 == A[4]. So false.

Proof of termination

• Will the algorithm always terminate?
• Parameter L always decreases, unless it is

already 1.
– Next call is with L/2 or L-L/2.
– So it will eventually become 1.
– So the base case will be reached.

Remarks

• If you are likely to search an array
frequently, it is useful to first sort it. The
time to sort the array will be be
compensated by the time saved in
subsequent searches.

• How do you sort an array in the first place?
Next.

• Binary search can be written without
recursion. Exercise.

Sorting

• Chapter 14 discusses a simple algorithm
for sorting called Selection sort.

• Selection can require n2 comparisons to
sort n keys.

• Algorithms requiring fewer comparisons
are known: nlog n comparisons.

• One such algorithm is Merge sort.

Mergesort idea
To sort a long sequence:
• Break up the sequence into two small

sequences.
• Sort each small sequence. (Recurse!)
• Somehow “merge” the sorted sequences into

a single long sequence.
• Hope: “merging” sorted sequences is easier

than sorting the large sequence.
• Our hope is correct, as we will see soon!

Example

• Suppose we want to sort the sequence
– 50, 29, 87, 23, 25, 7, 64

• Break it into two sequences.
– 50, 29, 87, 23 and 25, 7, 64.

• Sort both
– We get 23, 29, 50, 87 and 7, 25, 64.

• Merge
– Goal is to get 7, 23, 25, 29, 50, 64, 87.

Merge sort
void mergesort(int S[], int n){
// Sorts sequence S of length n.
 if(n==1) return;
 int U[n/2], V[n-n/2];
 for(int i=0; i<n/2; i++) U[i]=S[i];
 for(int i=0; i<n-n/2; i++) V[i]=S[i+n/2];
 mergesort(U,n/2);
 mergesort(V,n-n/2);
//”Merge” sorted U, V into S.
 merge(U, n/2, V, n-n/2, S, n);
}

Merging two sorted sequences

• Think of a sorted sequence as a row of
students, ordered shortest to tallest.

• We are given two such rows, U, V.
• We want to move students from both rows

into a new row S, but it should still be in
shortest to tallest order.

Merging
U: 23, 29, 50, 87.
V: 7, 25, 64.
S:
• The smallest overall must move into S.

Smallest overall can be smaller of smallest in
U and smallest in V.

• So after movement we get:
U: 23, 29, 50, 87.
V: -, 25, 64.
S: 7.

What do we do next?
U: 23, 29, 50, 87.
V: -, 25, 64.
S: 7.
• Now we need to move the second smallest into S.
• Second smallest:

– smallest in U,V after smallest has moved out.
– smaller of the students currently at the head of U, V.

• So we get:
U: -, 29, 50, 87.
V: -, 25, 64.
S: 7, 23.

General strategy
• While both U, V contain a student:

– Move smallest from those at the head of U,V to the end of
S.

• If only U contains students: move all to end of S.
• If only V contains students: move all to end of S.
• uf: index denoting which element of U is currently at

the front.
– U[0..uf-1] have moved out.

• vf: similarly for V.
• sb: index denoting where next element should move

into S next (sb: back of S)
– S[0..sb-1] contain elements that have moved in earlier.

Merging two sequences
merge(int U[], int p, int V[], int q, int S[], int n){
 for(int uf=0, vf=0, sb=0;
 sb < p + q; // while all elements havent moved
 sb++){
 if(uf<p && vf<q){ // both U,V are non empty
 if(U[uf] < V[vf]){
 S[sb] = U[uf]; uf++;
 } else{
 S[sb] = V[vf]; vf++;
 }
 } else if(uf < p){ // only U is non empty
 S[sb] = U[uf]; uf++;
 } else { // only V is non empty
 S[sb] = V[vf]; vf++;
 }}}

Concluding Remarks

• Recursion allows many programs to be expressed very

compactly

• The idea that the solution of a large problem can be

obtained from the solution of a similar problem of the

same type, is very powerful

• Euclid probably used this idea to discover his GCD

algorithm

• More examples in the book

