
CS 101:
Computer Programming and

Utilization

About These Slides

• Based on Chapter 14, 15 of the book
An Introduction to Programming Through C++
by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade
– First update by Varsha Apte
– Second update by Uday Khedker
– Third update by Sunita Sarawagi

Computers Must Deal with Large
Amounts of Data

Examples:

• Pressure measured at various points in an area

• Given altitudes of various points in a lake, find how much

water is there given the water level.

• Account balance of thousands of bank customers

• Quiz 1 Marks of all CS 101 students

How to Handle Lot of Data?

• Fundamental problem: Writing out variable names to
store each piece of data would be tiring
double pressure1, pressure2, …, pressure1000;

• This is the problem solved using Arrays
• More elaborate, modern, and flexible solution involving

vector's will be discussed later
• Arrays are simple to understand. Ideas useful in vectors

too

Arrays

For storing a large amount of data of the same type
double pressure[1000];
• Essentially defines 1000 variables (array elements)

Variables are named pressure[0], pressure[1],
pressure[2], …, pressure[999]

• The number inside [] is called index
• General form:

data-type array-name[size];
array-name[i] gives ith variable (index is i here)
Necessary: 0 <= i < size. (i <= size-1)
size also called length

Array Element Operations

• double pressure[1000];
• cin >> pressure[0];
• for(int i=0; i<1000; i++)
 cin >> pressure[i];
• pressure[34] = (pressure[33]+pressure[35])/2;
• cout << pressure[439]*3.33 << endl;

An array element is used in all the same ways as a scalar
variable is used
Array index can be itself an expression which will be
evaluated during execution and then the corresponding
element will be used

Index Out of Range

double pressure[1000];

pressure[1000] = 1.2;

double d = pressure[-5];

In the assignments above, the array index is outside the
allowed range: 0 through size-1. In such cases the
program may run and produce wrong results, may halt with
a message. Nothing is guaranteed

The programmer must ensure index stays in range

Initialization While Declaring

int squares[4] = {0, 1, 4, 9};

int cubes[] = {0, 1, 8, 27, 64}; // size = 5 inferred.

int x, pqr[200], y[]={1,2,3,4,7};

Marks Display Problem

Read in marks of the 100 students in a class, given in roll

number order, 1 to 100

After that, students may arrive in any order, and give their

roll number. The program must respond by printing out

their marks. If any illegal number is given as roll number,

the program must terminate

Program
double marks[100];

// array indices go from 0 to 99.
// roll numbers go from 1 to 100.
// marks of student with roll number i will be
// stored in marks[i-1].

for(int i=0; i<100; i++)
 cin >> marks[i];
while(true){
 int rollno;
 cin >> rollno;
 if(rollno < 1 || rollno > 100) break;
 cout << marks[rollno – 1] << endl;
}

Note the strictly
less than sign

Display Who Got Highest
Read marks as before. Display all roll numbers who got highest
marks
// marks defined and read into as before.
double maxsofar = marks[0];
for(int i=1; i < 100; i++){
 // Plan: in the ith iteration, maxsofar should
 // hold the maximum of marks[0..i-1].
 maxsofar = max(maxsofar, marks[i]);
 }
We can know the maximum marks only after seeing all the marks.

Hence identifying such students would need an additional iteration

Display Who Got Highest
// marks defined and read into as before.
double maxsofar = marks[0];
for(int i=1; i < 100; i++){
 // Plan: in the ith iteration, maxsofar should
 // hold the maximum of marks[0..i-1].
 maxsofar = max(maxsofar, marks[i]);
 }
// maxsofar now holds max value in marks[0..99].
for(int i=0; i < 100; i++)
 if(marks[i] == maxsofar)
 cout << i+1 << endl; // Marks[i] holds marks of rollno i+1.
Accumulating the maximum into the variable maxsofar: Very
standard idiom
Going over the array to filter elements that match a certain
condition: also standard

Histogram

Read in marks as before, print how many scored between
1-10, 11-20, …, 91-100

int hist[10];
// Plan: hist[i] will store number of students getting
// marks between (10*i)+1 and 10*(i+1)

On reading a certain mark v, add 1 to suitable element of
hist
Which element? (v-1)/10, assuming v is integer, and
truncation in division

Histogram

for(int i=0; i<10; i++) hist[i]=0;

for(int i=0; i<100; i++){

 double marks;

 cin >> marks;

 hist[int(marks-1)/10]++;

 // int(..) converts to int.

}

Mark Display Variation

• Teacher enters 100 pairs of numbers: (rollno, marks), … .

• Roll numbers are not necessarily 1...100. Can't become
indices

• Student types in roll number r. Program must print out
marks if r is valid roll number

If r is -1, then stop

• Program idea: Store roll numbers into a separate array.
Examine each element of the array and see if it equals r. If
so print corresponding marks from the marks array.

Linear Search of an Array

int rollno[100]; double marks[100];
for(int i=0; i<100; i++)
 cin >> rollno[i] >> marks[i];
while(true){
 int r; cin >> r;
 if(r == -1) break;
 for(int i=0; i<100; i++)
 if(rollno[i] == r){
 cout << marks[i] << endl;
 break;
 }
}

Polynomial Multiplication

• Given polynomials A(x), B(x)
• A(x) = a0 + a1x + a2x2 + ….+ anxn

• B(x) = b0 + b1x + b2x2 + ….+ bmxm

• Need to find their product C(x) = A(x) B(x)
• C(x) = c0 + c1x + c2x2 + ….+ cm+nxm+n

• Given a0, …, an and b0, …, bm find c0, …, cm+n

• Natural to use an array of n+1 elements to store the
coefficients of a degree n polynomial

• Algorithm idea:
• Each term aixi in A(x) will multiply each term bjxj in B(x)

and the product aibjxi+j will contribute to the term ci+jxi+j

Example of Degree 2 Polynomial
a: 2x2 + x + 3 Coefficients 2, 1, 3
b: 4x2 + 5x + 6 Coefficients 4, 5, 6

c: 8x4 + 14x3 + 29x2 + 21x + 18

Polynomial Multiplication

• Read the polynomials in two arrays a and b
(Read cofficient of degree i and store in ith index)

• Initialize all elements in array c to 0
• (Initially all coefficients in the result are 0)
• Implementing the Algorithm idea:

− Each term aixi in A(x) will multiply each term bjxj in
B(x) and the product aibjxi+j will contribute to the term
ci+jxi+j

− Multiply a[i] with b[j] and store in c[i+j]
− Consider each i: 0<=i<=max_degree,
 For each i consider each j: 0<=j<=max_degree

Program to Multiply Degree 10
Polynomials

double a[11], b[11], c[21];
// Polynomials A, B have degree 10, C has degree 20
for(int i=0; i<=10; i++)
 cin >> a[i]; // read in polynomial A
for(int j=0; j<=10; j++)
 cin >> b[j]; // read in polynomial B
for(int k=0; k<=20; k++)
 c[k] = 0;
for(int i=0; i<=10; i++) // Now multiply A and B
 for(int j=0; j<=10; j++)
 c[i+j] += a[i]*b[j]; // as discussed earlier.
for(int k=0; k<=20; k++)
 cout << c[k] <<‘ ‘; // output c, separated by spaces
cout << endl;

Dispatching Taxis

• Taxi drivers arrive: driverID put into “queue”. driverID :

integer

• Customer arrives: If taxi is waiting, first driver in queue

is assigned. If no taxi waiting, customer asked to call

again later

Key Requirements

• Remember driverIDs of drivers who are waiting to pick

up customers

• Remember the order of arrival

• When customer arrives: assign the earliest driver.

Remove driverID of assigned driver from memory

• When driver arrives: Add driver’s driverID to memory

How to Remember DriverIDs

Use an array.
const int n=500;
int driverID[n];
n: maximum number of drivers that might have to wait
simultaneously.
In what order to store the ids in the array?
What other information do we need to remember?
What do we do when customer arrives?
What do we do when driver arrives?

Idea 1

Store earliest driver in driverID[0]. Next earliest in

driverID[1]. …

Remember number of drivers waiting

int nWaiting;

Visualizing the Problem
 driverID[]

Time Driver
Arrival

Customer
Arrival

1 20
2 14
3 32
4 3 A
5 5
6 8
7 22 B
8 21
9 10 C

Program Outline

const int n=500; int driverID[n], nWaiting =
0;
while(true){
 char command; cin >> command;
 if(command == ‘d’){
 // process driver arrival.
 }
 else if(command == ‘c’){
 // process customer.
 }
 else if(command == ‘x’) break;
 else cout << “Illegal command.\n”;
}

Invariants

• nWaiting = number of waiting drivers.

Number of waiting drivers can be at most the array
length

0 <= nWaiting <= n

• id of earliest waiting driver is in driverID[0]

Next in driverID[1]

…

Last in driverID[nWaiting-1]

Driver Arrival

if(nWaiting == n)

cout << “Queue full.\n”;

else{

 int d; cin >> d;

 driverID[nWaiting] = d;

 nWaiting ++;

}

When Customer Arrives:

Provided nWaiting > 0:

Assign the earliest unassigned driver to customer.

Earliest unassigned: stored in driverID[0].

Second earliest should become new earliest…

Third earliest should become …

nWaiting should decrease.

Customer Arrival

if(nWaiting == 0)
 cout << “Try again later.\n”;
else{
 cout << “Assigning “<< driverID[0]
 << endl;
 for(int i=1; i <= nWaiting – 1; i++)
 driverID[i-1] = driverID[i];
 // Queue shifts up
 nWaiting-- ;
}

Idea 2

• Our program can be made more efficient.

• Emulate what might happen without computers.

• Names written on blackboard. Arriving driver IDs written

top to bottom. When board bottom reached, begin from

top if drivers have left.

Blackboard for Driver Dispatch
DRIVER
QUEUE
657
982
095
457
103
889
333
425
489
723
613
063
205

DRIVER
QUEUE
657
982
095
457
103
889
333
425
489
723
613
063
205

Front
Assigned

Front

DRIVER
QUEUE
546

103
889
333
425
489
723
613
063
205Last Last

Last

Front

Driver #546
arrives-Wrap
around and

start entering
at the top

DRIVER
QUEUE
546
630
341

103
889
333
425
489
723
613
063
205

Last

0
1
2
3
4
5
6
7
8
9
10
11
12

Front

More Efficient Implementation

• Think of driverID as a circular array

• The next position after driverID[n-1] (bottom of board) is

driverID[0] (top of board)

Invariants

• nWaiting = number of waiting drivers
0 <= nWaiting <= n

• New variable front = position of earliest arriving driver who
has not yet been assigned. front initialized to 0
0 <= front < n

• Valid driver IDs are at
driverID[front] … driverID[(front + nWaiting – 1) % n]
Note that % provides the effect of wrapping around
In the example (last table):
driverID[4] to driver[ID][(4+12-1)%13]

= driverID[4] to driverID[2]

Last = (nwaiting + Front - 1) % 13

Processing Driver Arrival

if(nWaiting == n)
 cout << “Queue full.\n”;
else{
 int d; cin >> d;
 driverID[(front+nWaiting) % n] = d;
 nWaiting ++;
}

// front + nWaiting % L : index of
// empty position after end of queue.

Processing Customer Arrival

if(nWaiting == 0)

 cout << “Try later.\n”;

else{

 cout << “Assigning “ <<

 driverID[front] << endl;

 front = (front + 1) % n;

 nWaiting --;

}

Remarks

New idea is better, copying of elements of driverID is

avoided.

Efficiency gain: Fixed number of operations

Exercise: make sure that the invariants indeed remain true

after each customer or driver arrival.

Textual data

• char type meant to store single letter.
• Array of char can be used to store

sequences or letters, e.g. words,
sentences, paragraphs.

• More elaborate, and safer solution based
on string data type will be discussed in
Chapter 22.

• Character arrays (section 15.1) excluded
from syllabus

Two Dimensional Arrays
• Useful for storing matrices, or tables
 double xyz[m][n];
• Creates m*n variables. The variables can be accessed by

writing xyz[i][j], where 0 ≤ i < m, and 0 ≤ j < n
• xyz[i][0], xyz[i][1], … xyz[i][n-1] constitute ith row of xyz
• xyz[0][j], xyz[1][j], … xyz[m-1][j] constitute jth column of xyz
• m,n are first and second dimensions of xyz
• Variables stored in memory in row major order, i.e. row 0,

followed by row 1, …, row m-1

Two Dimensional Arrays

• Initialization possible
int pqr[2][3] = {{1,5,7}, {13,6,2}};

• Values picked up from the initialization list in row major order
• Enhanced versions of two dimensional arrays will be

discussed later

Example 1

Create a 10x10 matrix A and initialize it to identity, i.e. value
1 in A[i][i] for all i and 0 elsewhere

double A[10][10];
for(int i=0; i<10; i++)

for(int j=0; j<10; j++)
if(i == j)

 A[i][j] = 1;
else

 A[i][j] = 0;

Example 2
• Create an array M to store marks of 10 students in 5

tests. Read the marks and store them in M.

double M[10][5];
for(int i=0; i<10; i++){

cout <<“Give marks of student ” <<i<<“: “;
for(int j=0; j<5; j++)

cin >> M[i][j];
}

Arrays in memory
• Defining an array
elemtype aname[asize];
Creates variables aname[0], aname[1], ...
aname[asize – 1] each of type elemtype.
• aname : array name,
• Informally the array name denotes the collection

of the created variables.
• aname[i] : The element with index i from the

collection aname.

Outline
• The computer’s view of arrays. This will help us

better understand:
- Where are the elements stored in memory
- What happens when an index out of range is used
- Function calls using arrays

• A function for sorting an array.
- Sort: rearrange elements so that they are in non-

decreasing or non-increasing order

Computer's view of array
definition

int q[4] = {11,12,13,14};
• Assuming a single int uses one four

byte word, 4 consecutive words of
memory are allocated to q.

• Allocated memory used to store the
variables q[0], q[1], q[2], q[3]
in order.

• Initial values stored.

Possible outcome

Address Used for Content
1004 q[0] 11
1008 q[1] 12
1012 q[2] 13
1016 q[3] 14

“Address”: address of first byte.
Address 1004: bytes 1004, 1005, 1006,

1007

Computer's interpretation of
array name

• Array name = address of allocated block
•= address of 0th array element.
• For int q[4]; defined earlier:
•cout << q ; will print 1004

• Addresses are printed in hexadecimal.
“0x12…”

• Type of q : int *
• Array name is a pointer, but its value

cannot be changed. “q = 1008” is illegal.

In general
elemtype aname[alength];
• Block of memory of length S*alength is

allocated, where S = size in bytes of a single
elemtype variable.

• aname = starting address of zeroth element =
address of allocated block. Const.

• Type of aname:
elemtype *
• Type of aname[i] : elemtype

How does the computer
interpret aname[index]

• [] is a binary operator!
• aname, index are the operands.
• aname[index] means

- The variable stored at aname + S * index, where S =
size of a single element of the type aname points to.

- Example: for aname = q as before: S = 4
- Yes, the computer does a multiplication and addition

to find the position of the element in memory.
- Note that only a single multiplication and addition is

done, however large the array is.

Example

Our old array q
int q[4];
Address Used for
1004-7 q[0]
1008-11 q[1]
1012-15 q[2]
1016-19 q[3]

q = 1004
type of q = int*

Computer’s view of q[3]
• q[3] : variable of the type that q

points to, stored at address q +
S*3 where S is size of a single
variable of the type that q points
to.

• variable of type int, stored at
1004 + 3*4 = 1016.

• Same as what we call q[3]

Summary: How a computer gets
to aname[index]

• The index is multiplied by the element
size and added to the starting address to
get the position in memory where the
variable is stored.

• That variable is used.

Index out of range

Our old array q
int q[4];
Address Used for
1004-7 q[0]
1008-11 q[1]
1012-15 q[2]
1016-19 q[3]

q = 1004
type of q = int*

Suppose we execute:
• q[10] = 34;

• q[10] : Mechanical interpretation as per
our rule: variable of the type that q points to,
stored at address q + 10*S where S is
size of a single variable of the type that q
points to.

• variable of type int, stored at 1004 + 10*4
= 1044.

• 34 will get stored in address 1044 which is
not part of q!

• Possibly some other variable will be written
into!

(contd.)
• x = q[10] : x will get some strange value.
• The computer may forbid accessing some

addresses, if 1044 is such an address,
computer may halt with an error message!

• So make sure index is in correct range!

Index out of range (contd.)
• Some programming languages prevent index out of

range by explicitly checking.
• First the value of the index is checked to see if it lies

in the range 0..size-1. If it does then the address is
calculated; if not an error message is printed and the
program stops.

• Index checking is not done because it takes extra work,
and because C++ designers believe that it is the
programmer’s job to ensure that the index is in range.

• The vector [] construct we discuss later does this in C++.

Summary
• Name of an array denotes a fixed value =

starting address of memory allocated for the
array.

• Type of the array name :
 address of element-type, or element-type*
• Getting to an element requires some calculation.
• Calculation happens fast, in time independent of

the array length.

Exercise

• What does the following code do?
•int q[4]={0,0,0,0};
•int *r;
•r = q;
•r[3] = 5;
•cout << q[3] << endl;

Two-dimensional array in
memory

• Stored in row-major format.
• a[3][2]

a[0][0]
a[0][1]
a[1][0]
a[1][1]
a[2][0]
a[2][1]

a -->

a[1] -->

Function calls on arrays

We might like to write functions to:
• find the largest value in the array
• find whether a given value is present in

the array.
• find the average of the elements in the

array.
• ...

Standard protocol of function
calls

• Non array arguments are copied from
activation frame of caller to the activation
frame of called function.

Should complete array be copied?
• Arrays might be large, so might take

very long. Seems like a waste of time.
• C++ does not support this.

How arrays are passed to
functions

• Convention:
• Do not copy array elements.
• Pass two arguments (a) starting address A (b)

number of elements, n.
• Can elements be accessed in called function?

– The expression A[i] can be used in the called
function to access the ith element because of
how [] works.

A program to find the average of
elements in array

•double avg(double M[], int
n){
• double sum = 0;
• for(int i=0; i<n; i++)
• sum +=M[i];;
• return sum/n;
•}
•int main(){
• double q[]={11,12,13,14};
•
• cout << avg(q, 4) << endl;
•}

• Let us first check if this is a
syntactically valid program,
never mind what it does.

• The types of the arguments to a
call must match the types of the
parameters.

• The first parameter of avg has
type double[], the first argument
in the call is q, whose type is
double[], because it points to
the first element of a double
array.

• The second parameter is of type
int, and 4 in the call is indeed
an int.

Equivalent call...
•double avg(double* M, int
n){
• double sum = 0;
• for(int i=0; i<n; i++)
• sum +=M[i];
• return sum/n;
•}
•int main(){
• double q[]={11,12,13,14};
• cout << avg(q, 4) << endl;
•}

• Let us first check if this is a
syntactically valid program,
never mind what it does.

• The types of the arguments to a
call must match the types of the
parameters.

• The first parameter of avg has
type double*, the first argument
in the call is q, whose type is
double*, because it points to the
first element of a double array.

• The second parameter is of type
int, and 4 in the call is indeed
an int.

A program to find the average of
elements in array

•double avg(double M[], int
n){
• double sum = 0;
• for(int i=0; i<n; i++)
• sum +=M[i];
• return sum/n;
•}
•int main(){
• double q[]={11,12,13,14};
• cout << avg(q, 4) << endl;
•}

• On execution of avg(q,4) in
main

• Activation frame created for avg.
• Value of q (starting address of array)

copied into parameter M.
• Thus M[i] in avg means q[i] of

main.
• Thus average of the elements of q is

calculated in avg.
• The average is returned, and printed.

Remarks
• The function call mechanism is just call by value; the

value of the array name is copied over. Nothing special
is needed.

• The interesting part is the [] operator: given an
address of an array and an index it can get us to the
corresponding element, even if the address belongs to
a different activation frame.

• The second argument to avg is not “required” to be the
array length. If it is smaller, then the function will return
the average of just that part of the array.

Passing 2 Dimensional Arrays to
Functions

 void printCountries(char c[][20], int n){
 for(int i=0; i<n; i++)

cout << c[i] << endl;
 }
 int main(){

 char countries[3][20]= … // as before
 printCountries(countries, 2);

 // will print out only first two countries
 }

Passing part of a 2 Dimensional Arrays to
Functions

 int sum(int c[], int n){
 int s = 0;

 for(int i=0; i<n; i++)
s += c[i];

 }
 int main(){

 int matrix[3][20]= … // as before
 cout << "Sum of second row " <<
sum(matrix[1],20)
 }

Sorting an array

• Suppose we are given an array
containing numbers.

• We want to rearrange the numbers so
that they appear in non-decreasing order.

• Example:
•Array initially: 35, 12, 29, 70, 18, 29
•Desired order: 12, 18, 29, 29, 35, 70

Sorting an array (contd.)

• Sorting is an important operation.
Chapter 16 gives a clue why.

• There are many algorithms for sorting.
Chapter 16 will discuss a clever and fast
algorithm.

• Here we discuss a slow, but easy to
understand algorithm: Selection Sort.

Selection Sort

• Basic idea:
• Find the largest number.
• Exchange it with the element in the last position.
• We have made progress, because the last

position now contains the largest, as we would
like it to.

• Now we can apply the same idea to the first N-1
elements of the array, where N = length of the
array.

• Then to first N-2 elements, and so on.

Finding the index of the largest
element

• int argmax(float data[], int L){
• // Scan the array from index 0 to L-1.
• // At all instants keep the index of the largest
• // found so far in a variable maxIndex.
• // Invariant for iteration i: maxIndex will be
• // the index of the max in data[0..i-1].
• int i=1, maxIndex=0; // invariant holds.
• for(i=1; i<L; i++)
• if(data[maxIndex] < data[i]) maxIndex = i;
• return maxIndex;
• }

The main function and main
program

• void selSort(float data[], int N){
• for(int i=N; i>1; i--){
• int maxIndex = argMax(data,i);
• // Returns index of the largest in data[0…i-1]
• float maxVal = data[maxIndex];
• data[maxIndex] = data[i-1];
• data[i-1] = maxVal; // exchange done!
• }
• }
• int main(){
• float a[6] = {35, 12, 29, 70, 18, 29};
• selsort(a, 6);
• }

•

Exercise

• Express selsort as a recursive program.

Recursive selsort
• void selSort(float data[], int N){
• if(N == 0) return;
• int maxIndex = argMax(data,N);
• float maxVal = data[maxIndex];
• data[maxIndex] = data[N-1];
• data[N-1] = maxVal; // exchange
• selSort(data, N-1)
• }
•

