
CS 101:
Computer Programming and

Utilization

About These Slides

• Based on Chapter 18 of the book
An Introduction to Programming Through C++
by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade
– First update by Varsha Apte
– Second update by Uday Khedker

Main Recommendations From The
Previous Chapter

• Define a struct to hold information related to

each entity that your program deals with

• Define member functions corresponding to

actions/operations associated with the entity

Outline

• Constructors
• Copy Constructors
• Destructors
• Operator overloading
• Overloading the assignment operator
• Access control
• Classes
• Graphics and input/output classes

 Motivational Example: The Queue
Struct in Taxi Dispatch

const int N=100;
struct queue{
 int elements[N],
 nwaiting,front;
 bool insert(int v){
 …
 }
 book remove(int &v){
 …
 }
};

• Once the queue is
created, we expect it to
be used only through the
member functions, insert
and remove

• We do not expect
elements, nWaiting, front
to be directly accessed

Main Program Using Queue
int main(){
 Queue q;
 q.front = q.nWaiting = 0;
 while(true){
 char c; cin >> c;
 if(c == ‘d’){
 int driver; cin >> driver;
 if(!q.insert(driver))
 cout <<“Q is full\n”;
 }
 else if(c == ‘c’){
 int driver;
 if(!q.remove(driver))
 cout <<“No taxi.\n”;
 else cout <<“Assigning <<
 driver<< endl;
 }
}

• Main program does use q through
operations insert and remove

• However, at the beginning, q.front and
q.nWaiting is directly manipulated

• This is against the philosophy of software
packaging

• When we create a queue, we will always
set q.nWaiting and q.front to 0

• C++ provides a way by which the
initialization can be made to happen
automatically, and also such that
programs using Queue do not need to
access the data members directly

• Just defining Queue q; would by itself set
q.nWaiting and q.front to 0!
– Next

Constructor Example

• In C++, the programmer may define a
special member function called a
constructor which will always be
called when an instance of the struct
is created

• A constructor has the same name as
the struct, and no return type

• The code inside the constructor can
perform initializations of members

• When q is created in the main
program, the constructor is called
automatically

struct Queue{
 int elements[N], front,
 nWaiting;
 Queue(){ // constructor
 nWaiting = 0;
 front = 0;
 }
 // other member functions
};
int main(){
 Queue q;
 // no need to set
 // q.nWaiting, q.front
 // to 0.
}

Constructors In General

struct A{
 …
 A(parameters){
 …
 }
};

int main(){
 A a(arguments);
}

• Constructor can take
arguments

• The creation of the object a in
main can be thought of as
happenning in two steps
– Memory is allocated for a in

main
– The constructor is called on

a with the given arguments
• You can have many

constructors, provided they
have different signatures

Another example: Constructor for
V3

struct V3{
 double x,y,z;
 V3(){
 x = y = z = 0;
 }
 V3(double a){
 x = y = z = a;
 }
};
int main();
 V3 v1(5), v2;
}

• When defining v1, an
argument is given

• So the constructor taking a
single argument is called.
Thus each component of v1 is
set to 5

• When defining v2, no
argument is given. So the
constructor taking no
arguments gets called. Thus
each component of v2 is set to
0

Remarks
• If and only if you do not define a constructor, will C++ defines

a constructor for you which takes no arguments, and does
nothing
– If you define a constructor taking arguments, you implicitly

tell C++ that you want programmers to give arguments.
So if some programmer does not give arguments, C++ will
flag it as an error

– If you want both kinds of initialization, define both kinds of
constructor

• A constructor that does not take arguments (defined by you
or by C++) is called a default constructor

• If you define an array of struct, each element is initialized
using the default constructor

The Copy Constructor

• Suppose an object is passed by value to a function
– It must be copied to the variable denoted by the

parameter
• Suppose an object is returned by a function

– The value returned must be copied to a temporary
variable in the calling program

• By default the copying operations are implemented by
copying each member of one object to the corresponding
member of the other object
– You can change this default behaviour by defining a

copy constructor

Example
struct Queue{
 int elements[N], nWaiting, front;
 Queue(const Queue &source){ // Copy constructor
 front = source.front;
 nWaiting = source.nWaiting;
 for(int i=front, j=0; j<nWaiting; j++){
 elements[i] = source.elements[i];
 i = (i+1) % N;
 }
};

Copy Constructor in the Example

• The copy constructor must take a single reference
argument: the object which is to be copied

• Note that the argument to the copy constructor must be
a reference, otherwise the copy constructor will have to
be called to copy the argument! This is will result in an
unending recursion

• Member elements is not copied fully. Only the useful
part of it is copied
– More efficient

• More interesting use later

Destructors

• When control goes out of a block in which a variable is

defined, that variable is destroyed

– Memory allocated for that variable is reclaimed

• You may define a destructor function, which will get

executed before the memory is reclaimed

Destructor Example

• If a queue that you have defined goes out of scope, it will
be destroyed

• If the queue contains elements at the time of destruction, it
is likely an error

• So you may want to print a message warning the user
• It is usually an error to call the destructor explicitly. It will

be called automatically when an object is to be destroyed.
It should not get called twice.

• More interesting uses of the destructor will be considered
in later chapters.

Destructor Example

struct Queue{
 int elements[N], nWaiting, front;
 …
 ~Queue(){ //Destructor
 if(nWaiting>0) cout << “Warning:”
 <<“ non-empty queue being destroyed.”
 << endl;
 }
};

Operator Overloading

• In Mathematics, arithmetic operators are used with
numbers, but also other objects such as vectors

• Something like this is also possible in C++!
• An expression such as x @ y where @ is any “infix”

operator is considered by C++ to be equivalent to
x.operator@(y) in which operator@ is a member function

• If the member function operator@ is defined, then that is
called to execute x @ y

Example: Arithmetic on V3 objects

struct V3{
 double x, y, z;
 V3(double a, double b, double c){
 x=a; y=b; z=c;
 }
 V3 operator+(V3 b){ // adding two V3s
 return V3(x+b.x, y+b.y, z+b.z); // constructor call
 }
 V3 operator*(double f){ // multiplying a V3 by f
 return V3(x*f, y*f, z*f); // constructor call
 }
};

Using V3 Arithmetic

int main(){

 V3 u(1,2,3), a(4,5,6), s;

 double t=10;

 s = u*t + a*t*t*0.5;

 cout << s.x <<‘ ‘<< s.y <<‘ ‘

 << s.z << endl;

}

Remarks

• Expression involving vectors can be made to look very
much like what you studied in Physics

• Other operators can also be overloaded, including unary
operators (see the book)

• Overload operators only if they have a natural
interpretation for the struct in question

• Otherwise you will confuse the reader of your program

The this pointer
• So far, we have not provided a way to refer to the receiver itself

inside the definition of a member function.
• Within the body of a member function, the keyword this points to

the receiver i.e. the struct on which the member function has been
invoked.

• Trivial use: write this->member instead of member directly.
struct V3{
 double x, y, z;

double length(){
return sqrt(*this.x * *this.x

+ *this.y * *this.y
+ *this.z * *this.z);

}
}
• More interesting use later.

Overloading The Assignment Operator

• Normally if you assign one struct to another, each
member of the rhs is copied to the corresponding
member of the lhs

• You can change this behaviour by defining member
function operator= for the struct

• A return type must be defined if you wish to allow
chained assignments, i.e. v1 = v2 = v3; which means v1
= (v2 = v3);
– The operation must return a reference to the left hand

side object

Example

struct Queue{
 ...
 Queue & operator=(Queue &rhs){
 front = rhs.front;
 nWaiting = rhs.nWaiting;
 for(int i=0; i<nWaiting; i++){
 elements[i] = rhs.elements[i];
 i = (i+1) % N;
 }
 return *this;
 }
};
// only the relevant elements are copied

Access Control

• It is possible to restrict access to members or member
functions of a struct

• Members declared public: no restriction

• Members declared private: Can be accessed only inside
the definition of the struct

• Typical strategy: Declare all data members to be private,
and some subset of function members to be public

Access Control Example

struct Queue{
private:
 int elements[N], nWaiting, front;
public:
 Queue(){ … }
 bool insert(int v){
 ..
 }
 bool remove(int &v){
 ..
 }
};

Remarks

• public:, private: : access specifiers
• An access specifier applies to all members defined following

it, until another specifier is given
• Thus elements, nWaiting, front are private, while Queue(),

insert, remove are public

Remarks

• The default versions of the constructor, copy constructor,
destructor, assignment operator are public

• If you specify any of these as private, then they cannot be
invoked outside of the struct definition

• Thus if you make the copy constructor of a struct X private,
then you will get an error if you try to pass a struct of type X
by value

• Thus, as a designer of a struct, you can exercise great
control over how the struct gets used

Classes

• A class is essentially the same as a struct, except:
– Any members/member functions in a struct are public by

default
– Any members/member functions in a class are private by

default

Classes

• Example: a Queue class:

class Queue{
 int elements[N], nWaiting, front;
public:
 Queue(){…}
 bool remove(int &v){…}
 bool insert(int v){…}
};

• Members elements, nWaiting and front will be private.

Example

struct V3{
 double x,y,z;
 V3(double v){
 x = y = z = v;
 }
 double X(){
 return x;
 }
};

struct V3{
 double x,y,z;
 V3(double v);
 double X();
};
//implementations
V3::V3(double v){
 x = y = z = v;
}
double V3::X(){
 return x;
}

Input Output Classes

• cin, cout : objects of class istream, ostream resp.
predefined in C++

• <<, >> : operators defined for the objects of these
classes

• ifstream: another class like istream
• You create an object of class ifstream and associate it

with a file on your computer
• Now you can read from that file by invoking the >>

operator!
• ofstream: a class like ostream, to be used for writing to

files
• Must include header file <fstream> to uses ifstream and

ofstream

Example of file i/o

#include <fstream>
#include <simplecpp>
int main(){
 ifstream infile(“f1.txt”);
 // constructor call. object infile is created and associated
 // with f1.txt, which must be present in the current directory
 ofstream outfile(“f2.txt”);
 // constructor call. Object outfile is created and associated
 // with f2.txt, which will get created in the current directory

Example of file i/o

 repeat(10){
 int v;
 infile >> v;
 outfile << v;
 }
 // f1.txt must begin with 10 numbers. These will be read
and
 // written to file f2.txt
}

Concluding Remarks
• The notion of a packaged software component is important.
• Making data members private: hiding the implementation

from the user
• Making some member functions public: providing an

interface using which the object can be used
• Separation of the concerns of the developer and the user
• Idea similar to what we discussed in connection with

ordinary functions
– The specification of the function must be clearly written

down (analogous to interface)
– The user should not worry about how the function does its

work (analogous to hiding data members)

