
CS 101:
Computer Programming and

Utilization

About These Slides

• Based on Chapter 22 of the book

An Introduction to Programming Through C++

by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade

− First update by Uday Khedker

− Second update by Sunita Sarawagi

The Standard Library

• Comes with every C++ distribution
• Contains many functions and classes that you are likely

to need in day to day programming
• The classes have been optimized and debugged

thoroughly
• If you use them, you may be able to write programs with

very little work
• Highly recommended that you use functions and classes

form the standard library whenever possible

Outline

• The string class

• The template class vector

– Multidimensional vectors

– Sorting a vector

• The template class map

– Iterators

• Remarks

The String Class

• A much more powerful version of the String class

developed in Chapter 21

• More constructors

• Concatenation using +

• Works with >> and <<

• Operations for extracting substrings and finding one

string inside another

Examples

#include <string> // Needed to use the string class
string v = “abcdab”; // constructor
string w(v); // another constructor. w = v
v[2] = v[3]; // indexing allowed. v becomes “abddab”
cout << v.substr(2) << v.substr(1,3) << endl;
 // substring starting at v[2] (“ddab”)
 // Substring starting at v[1] of length 3 (“bdd”)
int i = v.find(“ab”); // find occurrence of “ab” in v
 // and return index
int j = v.find(“ab”,1); // find from index 1
cout << i << “, “ << j << endl; // will print out 0, 4.

Remarks
• If the find member function does not find the argument in

the receiver, then it returns a constant string::npos, which is
a value which cannot be a valid index
– You can determine whether the argument was found by

checking whether the returned index equals string::npos
• string s; s.size() or s.length() returns a value of type size_t

(a redefinition of unsigned int)
• A string object can be passed by value, in which case it is

copied, or by reference
• More details on the web.

Example:http://www.cplusplus.com/reference/string/

Templates
• Function templates (Sec 12.5 in book)
• Consider these three functions: same body, different types

int Abs(int x) {
 if (x < 0)
 return -x;
 else return x;
}

float Abs(float x) {
 if (x < 0)
 return -x;
 else return x;
}

double Abs(double x) {
 if (x < 0)
 return -x;
 else return x;
}

A common template to unite
them all....

template<typename T>
T Abs(T x) {
 if (x < 0)
 return -x;
 else return x;
}

Template Class

• Like function templates, create class with templates.

template <class T>
class Queue {
 int front, nWaiting;
 T elements[100];
public:
 bool insert(T value)
{...}
 bool remove(T &val)
{...}
};

 main () {
 Queue<V3> q;
 Queue<int> r;
 }

The Template Class Vector

• Friendlier, more versatile version of arrays
• Must include header file <vector> to use it
• You can make vectors of any type by supplying the type as

an argument to the template
• Indexing possible like arrays
• Possible to extend length, or even insert in the middle
• We will not discuss how the vector class is implemented, but

you should be able to guess that its member functions would
allocate memory and deallocate it as needed

Examples

#include <vector>// needed
vector<int> v1; //empty vector. Elements will be int
vector<float> v2; //empty vector. Elements will be float
vector<short> v3(10); // vector of length 10.
 // Elements are of type short
vector<char> v4(5,’a’); // 5 elements, all ‘a’
cout << v3.size() << endl; // prints vector length, 10
 // v3.length() is same
v3[6] = 34; // standard indexing

Examples (Contd.)

#include <vector> // needed
...

v3.push_back(22); // append 22 to v3.
 // Length increases
vector<char> w;
w = v5; // element by element copy
v1.resize(9); // change length to 9
v2.resize(5, 3.3); // length becomes 5, all
 // values become 3.3
vector<string> s; // vector of string
vector<vector<int> > vv; // allowed!

A Technical Remark
• The member function size returns a value of type size_t
• size_t is an unsigned integer type; it is meant specially for

storing array indices
• When going through array elements, use size_t for the index

variable
vector<double> v(10); // initialize v
for(size_t i=0; i<v.size(); i++)

 cout << v[i] << endl;
• If i were declared int, then the compiler would warn about

the comparison between i and v.size()
– comparison between signed and unsigned int, which is

tricky as discussed in Section 6.8.
– By declaring i to be size_t, the warning is suppressed.

Multidimensional Vectors

vector<vector <int> > vv;
// each element of vv is itself a vector of int
// we must supply two indices to get to int
// Hence it is a 2d vector!
// Currently vv is empty
vector<vector <int> > vv1(5, vector<int>(10,23));
// vv1 has 5 elements
// each of which is a vector<int>
// of length 10,
// having initial value 23

Multidimensional Vectors

• Note that the syntax is not new/special
• It is merely repeated use of specifying the length and initial

value:
• vector<type> name(length, value)
• Two dimensional arrays can be accessed by supplying two

indices, i.e. we may write vv1[4][6] and so on
• Write vv1.size() and vv1[0].size() to get number of rows and

columns

Creating A 5x5 Identity Matrix

vector<vector<double>> m(5, vector<double>(5,0));
 // m = 5x5 matrix of 0s
 // elements of m can be accessed
 // by specifying two indices
for(int i=0; i<5; i++)
 m[i][i] = 1;
 // place 1s along the diagonal

Remarks

• The book gives a matrix class which internally uses
vector of vectors

• This class is better than two dimensional arrays because
it can be passed to functions by value or by reference,
with the matrix size being arbitrary

Sorting A Vector

• C++ provides a built-in facility to sort vectors and also
arrays

• You must include <algorithm> to use this

vector<int> v(10);
// somehow initialize v
sort(v.begin(), v.end());

• That’s it! v is sorted in non decreasing order
• begin and end are “iterators” over v. Think of them as

abstract pointers to the beginning and the end.

Sorting An Array

• The algorithms in header file <algorithm> can also sort
arrays as follows

double a[100];
// somehow initialize a
sort(a, a+100); // sorted!
// second argument is name+length

• More variations in the book

The Map Template Class

• A vector or an array give us an element when we supply
an index
– Index must be an integer

• But sometimes we may want to use indices which are
not integers, but strings
– Given the name of a country, we may want to find out

its population, or its capital
– This can be done using a map

Map: General Form And Examples

• General form:
map<indextype, valuetype> mapname;

• Examples:
map<string,double> population;

Indices will have type string (country names), and
elements will have type double (population)

 map<string, vector<string>> dictionary;

Maps words to their meanings expressed as a vector of
other words.

Using A Map

map<string,double> population;

population[“India”] = 1.21;
 // in billions. Map entry created
population[“China”] = 1.35;
population[“USA”] = 0.31;

cout << population[“China”] << endl;
 // will print 1.35

population[“India”] = 1.22;
 //update allowed

Checking if An Index is Defined

string country;
cout << “Give country name: “;
cin >> country;

if(population.count(country)>0)
 // true if element with index = country
 // was stored earlier
 // count is a known member function
 cout << population[country] << endl;
else cout << “Not known.\n”;

Remarks

• A lot goes on behind the scenes to implement a map

• Basic idea is discussed in Chapter 24 of our book

• If you wish to print all entries stored in a map, you will

need to use iterators, discussed next

Iterators

• A map can be thought of as holding a sequence of pairs, of

the form (index, value)

• For example, the population map can be considered to be

the sequence of pairs

[(“China”,1.35), (“India”,1.21), (“USA”, 0.31)]

• You may wish to access all elements in the map, one after

another, and do something with them

• For this, you can obtain an iterator, which points to (in an

abstract sense) elements of the sequence

Iterators

An iterator points to (in an abstract sense) elements of the
sequence

• An iterator can be initialized to point to the first element of
the sequence

• In general, given an iterator which points to some
element, you can ask if there is any element following the
element, and if so make the iterator point to the next
element

• An iterator for a map<index,value> is an object with type
map<index,value>::iterator

Iterators (contd.)

• An iterator points to elements in the map; each element
is a struct with members first and second

• We can get to the members by using dereferencing
• Note that this simply means that the dereferencing

operators are defined for iterators
• If many elements are stored in an iterator, they are

arranged in (lexicographically) increasing order of the
key

Example

map<string,double> population;
population[“India”] = 1.21;

map<string,double>::iterator mi;
mi = population.begin();
 // population.begin() : constant iterator
 // points to the first element of population
 // mi points to (India,1.21)
cout << mi->first << endl; // or (*mi).first << endl;
 // will print out India
cout << mi->second << endl;
 // will print out 1.21

Example

map<string,double> population;
population[“India”] = 1.21;
population[“China”] = 1.35;
population[“USA”] = 0.31;
for(map<string,double>::iterator
 mi = population.begin();
 mi != population.end();
 // population.end() : constant iterator
 // marking the end of population
 mi++)
 // ++ just sets mi to point to the
 // next element of the map
 // loop body

Example (Contd.)

map<string,double> population;
population[“India”] = 1.21;
population[“China”] = 1.35;
population[“USA”] = 0.31;
for(map<string,double>::iterator
 mi = population.begin();
 mi != population.end();
 mi++)
{
 cout << (*mi).first << “: “ << (*mi).second << endl;
 // or cout << mi->first << “: “ << mi->second << endl;
}
// will print out countries and population in alphabetical order

Remarks

• Iterators can work with vectors and arrays too
• Iterators can be used to find and delete elements from

maps and vectors.

 map<string,double>::iterator
 mi = population.find("India");
 population.erase(mi);

Map with user-defined class as index

• Any class used as indextype on a map must implement
the "<" operator.

• Example, the following code will not work because "<" is
not defined on V3.
• class V3 {public: double x,y,z};
• map<V3, string> vec2string;

• A correct implementation of V3 may be something like:
class V3 {
 public:
 double x,y,z;
 bool operator<(const V3& a) const {
 if (x < a.x) return true;
 if (x == a.x && y < a.y) return true;
 if (x==a.x && y == a.y && z < a.z) return true;
 return false;
 }
};

Sets

• Sets are containers that store unique elements following a
specific order

• The value of the elements in a set cannot be modified once
in the container (the elements are always const), but they
can be inserted or removed from the container

• Internally, the elements in a set are always sorted following
a specific ordering criterion indicated by its internal
comparison object

Populating and Traversing a Set

#include <set> // set class library
 ...
 set<int> set1; // create a set object,

 // specifying its content as int
 // the set is empty
int ar[]={3,2,4,2};
for (int i = 0; i < 4; i++) {
 set1.insert(ar[i]); // add elements to the set.
}
for (set<int>::iterator iter = set1.begin(); iter != set1.end();
iter++) { cout << *iter << " ";
} // prints 2 3 4

Application of Set

 map<set<string>, vector<int>> study_group;
 // key of the map is the set of courses.
 // value is vector of student roll-numbers of students who
have taken this course.
 cin >> N;
 for(int i = 0; i < N; i++) {
 int roll, int n;
 cin >> roll >> n;
 set<string> subjects;

Given N students where each student has a list of courses that they have
taken.
Create group of all students that have taken exactly the same set of courses.

Application of Set (continued)
 for (int j = 0; j < n; j++) {
 string s; cin >> s;
 subjects.insert(s);
 }
 study_group[subjects].push_back(rollno);
 }

List

• Implements a classic list data structure
• Supports a dynamic bidirectional linear list
• Unlike a C++ array, the objects the STL list contains

cannot be accessed directly (i.e., by subscript)
• Is defined as a template class, meaning that it can be

customized to hold objects of any type
• Responds like an unsorted list (ie. the order of the list is

not maintained). However, there are functions available
for sorting the list

Populating and Traversing a List

#include <list> // list class library
 ...
 list <int> list1; // create a list object,

 // specifying its content as int
 // the list is empty
for (i=0; i<5; i++)
 list1.push_back (i); // add at the end of the list
...
while (list1.size() > 0)
{ cout << list1.front(); // print the front item
 list1.pop_front(); // discard the front item
}

Concluding Remarks

• Standard Library contains other useful classes, e.g.
queue, list, set etc.

• The Standard Library classes use heap memory,
however this happens behind the scenes and you don’t
have to know about it

• The library classes are very useful. Get some practice
with them

• More details on the web.
Example:http://www.cplusplus.com/reference/stl/

