CS 101:
Computer Programming and
Utilization

Jan-Apr 2017

Sunita Sarawagi
(cs101@cse.iitb.ac.in)

Lecture 3: How Computers Work (Contd.)



About These Slides

« Based on Chapter 2 of the book
An Introduction to Programming Through C++
by Abhiram Ranade (Tata McGraw Hill, 2014)

 QOiriginal slides by Abhiram Ranade
— First update by Varsha Apte
— Second update by Uday Khedker



Number Representation
(A High Level View)



Representing Numbers

Digital circuits can store O's and 1's
How to represent numbers using this capability?

Key idea : Binary number system

Represent all numbers using only 1's and O's



Number Systems

« Roman system

— new symbols for larger
numbers

— could not represent
larger numbers

Roman Numeral Table

1(1 14 | Kl 27 | H0 150 [CL
2|1l 15| 28 | H 200 (CC
3 16 | | 29 | KAlx 300 |CCC
4 17 | =4 30 | XX 400 (CD
5% 18 |0 31 | XK 500 (D

6 %I 19 | KK 40| XL 600 (DC
FaR! 20 | ¥x a0|L 700 |DCC
8+l 21| %x 60| Lx 800 |(DCCC
9| 22 | ¥ 70| L 900 | CW
10| 23 | #xl B0 | LR 1000 | 1
11X 24 | XY 90 | KC 1600 | MDC
12 |l 23 | KR 100 | C 1700 | WMDCC
13 | 26 | X0 101 | CI 1200 | MM

Mathd Tube com

« Radix based number systems (e.g. Decimal)

« Revolutionary concept in number representation!




Radix-Based Number Systems

« Key idea: position of a symbol determines it's value!
PLACE VALUE

— How do we determine it's relative position in list of
symbols?

— A Zero symbol needed to shift the position of a symbol
 Number systems with radix r should have r symbols

— The value of a symbol is multiplied by r for each left shift.

— Multiply from right to left by: 1, r, r2, r3 ... and then add



Decimal Number System

« RADIXis 10. Place-Values: 1, 10,100,1000...
* In the decimal system: 346

— Value of "6" =

— Value of "4" = 4 x10

— Value of "3" = 3x10x 10



Quadral Number System

RADIX is 4. Place values: 1, 4, 16, 64, 256,...
Only 4 symbols (digits) needed 0,1,2,3

23 In quadral:

— Value of 3 =3

— Value of 2=2 x4

— Value of 23 in quadral = 11 in decimal

22130 in quadral=

— 0+(3x4)+ (1x4x4) +(2x4x4x4)+(2x4x4x4
X 4)

= 668 Iin decimal



Octal Number Systems

RADIX is 8. Place Value: 1, 8, 64, 512,....
8 digits needed :0,1,2,3,4,5,6,7
23 in octal
— Value of 3= 3
— Valueof2= 2x8
— Value of 23 in octal = 19 in decimal
45171 in octal =
— 1+8*7+8*8*1+8*8*8*5+8*8*8*8*4
= 19065 in decimal



Binary System

Radix= 2
Needs ONLY TWO digits : 0 and 1
Place-value: powers of two:

128/ 64 |32 (16 | 8 | 4 | 2 | 1

11 Iin binary:

— Value of rightmost 1 = 1

— Value of next 1 = 1 x2

— 11 in binary = 3 in decimal
110011

128 64 | 32 | 16 | 8 | 4 | 2 1
1 1 0| O 1

=1x1+1x2+0x4+0x8+1x16+1x32
=1+ 2+ 16 + 32= 51 (in decimal)



Binary System: Representing Numbers

 Decimal to binary conversion

— EXxpress it as a sum of powers of two
 Example: the number 154 in binary:

— 154 =128 +16+8 + 2

— 154 =1x2"+0x20+0x2°+1x24+1x23+0 x 22+
1x21"+0x20

128/ 64 |32 (16 | 8 | 4 | 2 | 1

1100|110 1]O0

— Thus 154 in binary is 10011010



Fractions In Binary

« Powers on the right side of the point are negative:

8 |4 | 2 |1 |12 14 1/8| 1/16

« Binary0.1 = 0+1x27 =0.5in decimal
* InBinary 0.11= Ox1+1x27+1 x22

=05+0.25=0.75 in decimal



Representing Non-Negative Numbers

The number of bits (capacitors/wires) used cannot be chosen
arbitrarily

Choices allowed: 8, 16, 32, 64

Example: To store 25 using 32 bits:

— 25 Decimal = 00000000000000000000000000011001
— So store the following charge pattern (H=High, L=Low)
— LLLLLLLLbee et bbbl LEHHLLH

Range stored: 0 to 232 — 1. If your numbers are likely to be
larger, then use 64 bits.

Choose the number of bits depending upon how large you
expect the number to be.



Representing Integers That Can Be

Positive And Negative
One of the bits is used to indicate sign

Sign bit = 0 means positive, = 1 means negative number

To store -25 use
— 10000000000000000000000000011001, Leftmost bit = sign bit

Range stored: -(231 — 1) to 231 — 1

Actual representation: Two’s complement
— If x is positive: (0 <=x <= 2n1-1)
* Binary form of x
— If x is negative (-2"1<=x<0)
« Binary form of 2n + x

« E.g.-25in2's complement:
11111111111111111111111111111100111 =
(100000000000000000000000000000000 -
00000000000000000000000000011001)



Representing Real numbers

Use an analogue of scientific notation:
significand * 10exponent @ g. 6.022 * 1022

For us the significand and exponent are in binary
significand * 2exponent

Single precision: store significand in 24 bits, exponent in 8
bits. Fits in one word!

Double precision: store significand in 53 bits, exponent in 11
bits. Fits in a double word!

Actual representation: more complex. “IEEE Floating Point
Standard”



Example

Let us represent the number 3450 = 3.45 x 103
First: Convert to binary:
3450 = 211+ 210+ 28 + 26+ 25+24 +23 + 21

1 oo o [7 e s s [ 2 0 o
1 1 0 1 0 1 1 1 1 0 1 0

Thus 3450 in binary = 110101111010
3450 in significand-exponent notation: how?
1.10101111010 x 21011

— 10 in binary is 2 in decimal

— 1011 in binary is 11 in decimal, we have to move the
"binary point" 11 places to the right



Example Continued

For computer representation:

« Use 23 bits for magnitude of significand, 1 bit for sign
» Use 7 bits for magnitude of exponent, 1 bit for sign

01101011110100000000000000001011
« Decimal point is assumed after 2nd bit.



Concluding Remarks

Key idea 1: use numerical codes to represent non numerical
entities

— letters and other symbols: ASCII code
— operations to perform on the computer: Operation codes

Key idea 2: Current/charge/voltage values in the computer
circuits represent bits (0 or 1).

Key idea 3: Larger numbers can be represented using
sequence of bits.

— In a fixed number of bits you can represent numbers in a
fixed range.

— If you dedicate a bit to representing the sign, the range of
representable numbers changes.

— Real numbers are represented approximately. If you want
more precision or greater range, you need to use larger
number of bits.



