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Number Representation
(A High Level View)



Representing Numbers

• Digital circuits can store 0's and 1's

• How to represent numbers using this capability?

• Key idea : Binary number system

• Represent all numbers using only 1's and 0's



Number Systems

• Roman system

– new symbols for larger 
numbers

– could not represent 
larger numbers

• Radix based number systems (e.g. Decimal)

• Revolutionary concept in number representation!



Radix-Based Number Systems

• Key idea: position of a symbol determines it's value!   
PLACE VALUE
– How do we determine it's relative position in list of 

symbols?
– A Zero symbol needed to shift the position of a symbol

• Number systems with radix r  should have r symbols 
– The value of a symbol is multiplied by r for each left shift. 
– Multiply from right to left by: 1, r, r2, r3

,   ... and then add



Decimal Number System

• RADIX is 10.  Place-Values: 1, 10,100,1000...

• In the decimal system: 346

− Value of "6" = 6

− Value of "4" =  4 x 10

− Value of "3" =  3 x 10 x 10



Quadral Number System

• RADIX is 4. Place values: 1, 4, 16, 64, 256,...
• Only 4  symbols (digits) needed 0,1,2,3
• 23 in quadral:

– Value of 3 =3
– Value of 2 = 2 x 4
– Value of 23 in quadral =  11 in decimal

• 22130 in quadral=
– 0 + (3 x 4) +  (1 x 4 x 4)  + (2 x 4 x 4 x 4) + (2 x 4 x 4 x 4 

x 4)
    = 668 in decimal



Octal Number Systems

• RADIX is 8. Place Value:  1, 8, 64, 512,....
• 8 digits needed  : 0,1,2,3,4,5,6,7
• 23 in octal

– Value of  3 =  3
– Value of 2 =   2 x 8
– Value of 23 in octal = 19 in decimal

• 45171 in octal =
– 1+8*7+8*8*1+8*8*8*5+8*8*8*8*4
    = 19065 in decimal



Binary System
• Radix= 2
• Needs ONLY TWO digits : 0 and 1
• Place-value: powers of two: 

• 11 in binary:
– Value of rightmost 1 = 1
– Value of next 1 =  1 x2
– 11 in binary  =  3 in decimal

• 110011

= 1x1 + 1 x2 + 0 x 4 + 0 x 8 + 1 x 16 + 1 x 32
= 1 + 2 + 16 + 32= 51 (in decimal)

128 64 32 16 8 4 2 1

128 64 32 16 8 4 2 1
1 1 0 0 1 1



Binary System: Representing Numbers 

• Decimal to binary conversion
– Express it as a sum of powers of two

• Example: the number 154 in binary:
– 154 = 128 + 16 + 8 + 2
– 154 = 1 x 27 + 0 x 26 + 0 x 25 + 1 x 24 + 1 x 23 +0 x 22 + 

1 x 21 + 0 x 20

– Thus 154 in binary is 10011010

128 64 32 16 8 4 2 1

1 0 0 1 1 0 1 0



Fractions In Binary

• Powers on the right side of the point are negative:

• Binary 0.1  =  0 + 1 x 2-1    = 0.5 in decimal

• In Binary   0.11 =   0x 1 + 1 x 2-1 + 1  x 2-2

= 0.5 + 0.25 = 0.75 in decimal

8 4 2 1 1/2 1/4 1/8 1/16



Representing Non-Negative Numbers

• The number of bits (capacitors/wires) used cannot be chosen 
arbitrarily

• Choices allowed: 8, 16, 32, 64
• Example: To store 25 using 32 bits:

− 25 Decimal = 00000000000000000000000000011001
− So store the following charge pattern (H=High, L=Low)
− LLLLLLLLLLLLLLLLLLLLLLLLLLLHHLLH

• Range stored: 0 to 232 – 1.  If your numbers are likely to be 
larger, then use 64 bits.

• Choose the number of bits depending upon how large you 
expect the number to be.



Representing Integers That Can Be 
Positive And Negative

• One of the bits is used to indicate sign
• Sign bit = 0 means positive, = 1 means negative number
• To store -25 use

− 10000000000000000000000000011001, Leftmost bit = sign bit

• Range stored: -(231 – 1) to 231 – 1
• Actual representation: Two’s complement

– If x is positive: (0 <= x <=  2n-1 – 1)
• Binary form of x

– If x is negative  ( -2n-1 <= x < 0)
• Binary form of 2n + x
• E.g. -25 in 2's complement:  

11111111111111111111111111111100111 = 
(100000000000000000000000000000000 -
00000000000000000000000000011001)



Representing Real numbers

• Use an analogue of scientific notation:
significand * 10exponent, e.g. 6.022 * 1022

• For us the significand and exponent are in binary
significand * 2exponent

• Single precision: store significand in 24 bits, exponent in 8 
bits.  Fits in one word!

• Double precision: store significand in 53 bits, exponent in 11 
bits.  Fits in a double word!

• Actual representation: more complex. “IEEE Floating Point 
Standard”



Example

• Let us represent the  number 3450 = 3.45 x 103

• First: Convert to binary: 
• 3450 = 211+ 210+ 28 + 26+ 25+24 +23 + 21

• Thus 3450 in binary =  110101111010 
• 3450 in significand-exponent notation: how?
• 1.10101111010 x 21011

− 10 in binary is 2 in decimal
− 1011 in binary is 11 in decimal, we have to move the 

"binary point" 11 places to the right  

11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 1 1 1 0 1 0



Example Continued

For computer representation: 

• Use 23 bits for magnitude of significand, 1 bit for sign 
• Use 7 bits for magnitude of exponent, 1 bit for sign
    01101011110100000000000000001011
• Decimal point is assumed after 2nd bit.



Concluding Remarks
• Key idea 1: use numerical codes to represent non numerical 

entities
− letters and other symbols: ASCII code
− operations to perform on the computer: Operation codes

• Key idea 2: Current/charge/voltage values in the computer 
circuits represent bits (0 or 1).

• Key idea 3: Larger numbers can be represented using 
sequence of bits.
− In a fixed number of bits you can represent numbers in a 

fixed range.
− If you dedicate a bit to representing the sign, the range of 

representable numbers changes.
− Real numbers are represented approximately.  If you want 

more precision or greater range, you need to use larger 
number of bits.


