CS 101: Computer Programming and Utilization

Jan-Apr 2017

Sunita Sarawagi (cs101@cse.iitb.ac.in)

Lecture 3: How Computers Work (Contd.)

About These Slides

- Based on Chapter 2 of the book
 An Introduction to Programming Through C++ by Abhiram Ranade (Tata McGraw Hill, 2014)
- Original slides by Abhiram Ranade
 - First update by Varsha Apte
 - Second update by Uday Khedker

Number Representation (A High Level View)

Representing Numbers

- Digital circuits can store 0's and 1's
- How to represent numbers using this capability?
- Key idea : <u>Binary number system</u>
- Represent all numbers using only 1's and 0's

Number Systems

- Roman system
 - new symbols for larger numbers
 - could not represent larger numbers

Roman Numeral Table								
1	1	14	XIV	27	XXVII	150	CL	
2	Н	15	XV	28	XXVIII	200	сс	
3	III	16	XVI	29	XXIX	300	CCC	
4	IV	17	XVII	30	XXX	400	CD	
5	V	18	XVIII	31	XXXI	500	D	
6	VI	19	XIX	40	XL	600	DC	
7	VII	20	xx	50	É.	700	DCC	
8	VIII	21	XXI	60	LX	800	DCCC	
9	IX	22	XXII	70	LXX	900	СМ	
10	Х	23	XXIII	80	LXXX	1000	М	
11	XI	24	XXIV	90	XC	1600	MDC	
12	XII	25	XXV	100	С	1700	MDCC	
13	XIII	26	XXVI	101	CI	1900	мсм	

MathATube.com

- Radix based number systems (e.g. Decimal)
- Revolutionary concept in number representation!

Radix-Based Number Systems

- Key idea: position of a symbol determines it's value!
 PLACE VALUE
 - How do we determine it's relative position in list of symbols?
 - A Zero symbol needed to shift the position of a symbol
- Number systems with radix *r* should have *r* symbols
 - The value of a symbol is multiplied by *r* for each left shift.
 - Multiply from right to left by: 1, r, r^2 , r^3 , ... and then add

Decimal Number System

- RADIX is 10. Place-Values: 1, 10,100,1000...
- In the decimal system: 346

- Value of "6" = 6

- Value of "4" = 4 x 10
- Value of "3" = 3 x 10 x 10

Quadral Number System

- RADIX is 4. Place values: 1, 4, 16, 64, 256,...
- Only 4 symbols (digits) needed 0,1,2,3
- 23 in quadral:
 - Value of 3 = 3
 - Value of $2 = 2 \times 4$
 - Value of 23 in quadral = 11 in decimal
- 22130 in quadral=
 - $\begin{array}{rrr} & 0 + (3 \times 4) + & (1 \times 4 \times 4) & + & (2 \times 4 \times 4 \times 4) + & (2 \times 4 \times 4 \times 4 \times 4) \\ & \times & 4) \end{array}$
 - = 668 in decimal

Octal Number Systems

- RADIX is 8. Place Value: 1, 8, 64, 512,....
- 8 digits needed : 0,1,2,3,4,5,6,7
- 23 in octal
 - Value of 3 = 3
 - Value of $2 = 2 \times 8$
 - Value of 23 in octal = 19 in decimal
- 45171 in octal =
 - 1+8*7+8*8*1+8*8*8*5+8*8*8*8*4
 - = 19065 in decimal

Binary System

- Radix= 2
- Needs ONLY TWO digits : 0 and 1
- Place-value: powers of two:

128 64 32 1	6 8	4	2	1
-------------	-----	---	---	---

- 11 in binary:
 - Value of rightmost 1 = 1
 - Value of next $1 = 1 x^2$
 - 11 in binary = 3 in decimal
- 110011

128	64	32	16	8	4	2	1
		1	1	0	0	1	1

= 1x1 + 1x2 + 0x4 + 0x8 + 1x16 + 1x32= 1 + 2 + 16 + 32 = 51 (in decimal)

Binary System: Representing Numbers

- Decimal to binary conversion
 - Express it as a sum of powers of two
- Example: the number 154 in binary:
 - 154 = 128 + 16 + 8 + 2
 - $-154 = 1 \times 2^7 + 0 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$

128	64	32	16	8	4	2	1
1	0	0	1	1	0	1	0

- Thus 154 in binary is 10011010

Fractions In Binary

• Powers on the right side of the point are negative:

8	4	2	1	1/2	1/4	1/8	1/16

- Binary 0.1 = $0 + 1 \times 2^{-1} = 0.5$ in decimal
- In Binary $0.11 = 0x 1 + 1x 2^{-1} + 1x 2^{-2}$

= 0.5 + 0.25 = 0.75 in decimal

Representing Non-Negative Numbers

- The number of bits (capacitors/wires) used cannot be chosen arbitrarily
- Choices allowed: 8, 16, 32, 64
- Example: To store 25 using 32 bits:

 - So store the following charge pattern (H=High, L=Low)
 - LLLLLLLLLLLLLLLLLLLLLLLHHLLH
- Range stored: 0 to 2³² 1. If your numbers are likely to be larger, then use 64 bits.
- Choose the number of bits depending upon how large you expect the number to be.

Representing Integers That Can Be Positive And Negative

- One of the bits is used to indicate sign
- Sign bit = 0 means positive, = 1 means negative number
- To store -25 use
- Range stored: $-(2^{31} 1)$ to $2^{31} 1$
- Actual representation: Two's complement
 - If x is positive: $(0 \le x \le 2^{n-1} 1)$
 - Binary form of x
 - If x is negative $(-2^{n-1} \le x \le 0)$
 - Binary form of $2^n + x$

Representing Real numbers

- Use an analogue of scientific notation: significand * 10^{exponent}, e.g. 6.022 * 10²²
- For us the significand and exponent are in binary significand * 2^{exponent}
- Single precision: store significand in 24 bits, exponent in 8 bits. Fits in one word!
- Double precision: store significand in 53 bits, exponent in 11 bits. Fits in a double word!
- Actual representation: more complex. "IEEE Floating Point Standard"

Example

- Let us represent the number $3450 = 3.45 \times 10^3$
- First: Convert to binary:
- $3450 = 2^{11} + 2^{10} + 2^8 + 2^6 + 2^5 + 2^4 + 2^3 + 2^1$

- Thus 3450 in binary = 110101111010
- 3450 in significand-exponent notation: how?
- 1.10101111010 x 2¹⁰¹¹
 - 10 in binary is 2 in decimal
 - 1011 in binary is 11 in decimal, we have to move the "binary point" 11 places to the right

Example Continued

For computer representation:

- Use 23 bits for magnitude of significand, 1 bit for sign
- Use 7 bits for magnitude of exponent, 1 bit for sign 0110101111010000000000000001011
- Decimal point is assumed after 2nd bit.

Concluding Remarks

- Key idea 1: use numerical codes to represent non numerical entities
 - letters and other symbols: ASCII code
 - operations to perform on the computer: Operation codes
- Key idea 2: Current/charge/voltage values in the computer circuits represent bits (0 or 1).
- Key idea 3: Larger numbers can be represented using sequence of bits.
 - In a fixed number of bits you can represent numbers in a fixed range.
 - If you dedicate a bit to representing the sign, the range of representable numbers changes.
 - Real numbers are represented approximately. If you want more precision or greater range, you need to use larger number of bits.