
CS 101:
Computer Programming and

Utilization

About These Slides

• Based on Chapter 3 of the book
An Introduction to Programming Through C++
by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade
– First update by Varsha Apte
– Second update by Uday Khedker
– Third update by Sunita Sarawagi

Recall

• In the previous slide set, we learnt that computers
essentially do arithmetic operations on numbers stored
in the memory

• Now we will learn details of how different types of
numbers are represented and stored, and referred to in
a program

Outline

• How to store numbers in the memory of a computer

• How to perform arithmetic

• How to read numbers into the memory from the keyboard

• How to print numbers on the screen

• Many programs based on all this

Reserving Memory For Storing
Numbers

Before you store numbers in the
computer's memory, you must
explicitly reserve space for
storing them in the memory
This is done by a variable
declaration statement.
variable: name given to the
space you reserved.
You must also state what kind
of values will be stored in the
variable: data type of the
variable.

0 0 0 0 1 1 0 1 0
1

2

3

4

5 0 0 0 0 0 1 0 1

6

7

8

9

Byte#5 reserved for some variable
named, "c", say.

Variable Declaration

A general statement of the form:

data_type_name variable_name;

Creates and declares variables

Earlier example

int sides;

int : name of the data type. Short form for integer. Says

reserve space for storing integer values, positive or negative, of
a standard size

Standard size = 32 bits on most computers

sides : name given to the reserved space, or the variable created

Variable Declaration
0
1
2
3
4
5
6
7
8
9

.......

32 bits

int sides;
Results in a memory location of size 32 bits being reserved for this
variable. The program will refer to it by the name sides

Variable Names: Identifiers
Sequence of one or more letters, digits and the underscore
“_” character
• Should not begin with a digit
• Some words such as int cannot be used as variable

names. Reserved by C++ for its own use
• Case matters. ABC and abc are distinct identifiers
Examples:
• Valid indentifiers: sides, telephone_number, x, x123,

third_cousin
• Invalid identifiers: #sides, 3rd_cousin, third cousin
Recommendation: use meaningful names, describing the
purpose for which the variable will be used

Some Other Data Types Of C++
• unsigned int : Used for storing integers which will always be

positive
− 1 word (32 bits) will be allocated
− Ordinary binary representation will be used

• char : Used for storing characters or small integers
− 1 byte will be allocated
− ASCII code of characters is stored

• float : Used for storing real numbers
− 1 word will be allocated
− IEEE FP representation, 8 bits exponent, 24 bits significand

• double : Used for storing real numbers
− 2 words will be allocated
− IEEE FP representation, 11 bits exponent, 53 bits significand

Variable Declarations

• Okay to define several variables
in same statement

• The keyword long : says, I need
to store bigger or more precise
numbers, so give me more than
usual space.

• long unsigned int: Likely 64 bits
will be allocated

• long double: likely 96 bits will be
allocated

unsigned int
telephone_number;

float velocity;

float mass, acceleration;

long unsigned int
crypto_password;

long double
more_precise_vaule;

Variable Initialization
• Initialization - an INITIAL value is

assigned to the variable

the value stored in the variable at the time of
its creation

− Variables i, vx, vy are declared
and are initialized

− 2.0e5 is how we write 2.0*105

− ‘f’ is a character constant
representing the ASCII value of
the quoted character

− result and weight are declared but
not initialized

int i=0, result;

float vx=1.0,
vy=2.0e5,
weight;

char value = ‘f’;

Const Keyword

const double pi = 3.14;

The keyword const means : value assigned once cannot be

changed

Useful in readability of a program

 area = pi * radius * radius;

reads better than

area = 3.14 * radius * radius;

Reading Values Into Variables (1)

• Can read into several variables one
after another

• If you read into a char type variable,
the ASCII code of the typed character
gets stored

• If you type the character ‘f’, the ASCII
value of ‘f’ will get stored

cin >> noofsides;

cin >> vx >> vy;

char command;

cin >> command;

Reading Values Into Variables (2)

Some rules:

• User expected to type in values consistent with the type of

the variable into which it is to be read

• Whitespaces (i.e. space characters, tabs, newlines) typed by

the user are ignored.

• newline/enter key must be pressed after values are typed

Printing Variables On The Screen
• General form: cout << variable;
• Many values can be printed one after

another
• To print newline, use endl
• Additional text can be printed by

enclosing it in quotes
• This one prints the text Position: ,

then x and y with a comma between
them and a newline after them

• If you print a char variable, then the
content is interpreted as an ASCII
code, and the corresponding
character is printed.
G will be printed.

cout << x;

cout << x << y;

cout <<“Position:" <<
x << “, “ << y <<
endl;

char var = ‘G’;
cout << var;

An Assignment Statement
Used to store results of computation into a variable. Form:
variable_name = expression;
Example:
s = u*t + 0.5 * a * t * t;
Expression : can specify a formula involving constants or
variables, almost as in mathematics

• If variables are specified, their values are used.
• operators must be written explicitly
• multiplication, division have higher precedence than

addition, subtraction
• multiplication, division have same precedence
• addition, subtraction have same precedence
• operators of same precedence will be evaluated left to

right.
• Parentheses can be used with usual meaning

Examples

int x=2, y=3, p=4, q=5, r, s, t;
x = r*s; // disaster. r, s undefined
r = x*y + p*q;
 // r becomes 2*3 + 4*5 = 26
s = x*(y+p)*q;
 // s becomes 2*(3+4)*5 = 70
t = x – y + p – q;
 // equal precedence,
 // so evaluated left to right,
 // t becomes (((2-3)+4)-5 = -2

Arithmetic Between Different Types
Allowed

int x=2, y=3, z, w;
float q=3.1, r, s;
r = x; // representation changed

 // 2 stored as a float in r "2.0"
z = q; // store with truncation

// z takes integer value 3
s = x*q; // convert to same type,
 // then multiply
 // Which type?

Evaluating varA op varB
e.g. x*q

• if varA, varB have the same data type: the result will have

same data type

• if varA, varB have different data types: the result will have

more expressive data type

• int/short/unsigned int are less expressive than float/double

• shorter types are less expressive than longer types

Rules for storing numbers of one
type into variable of another type

• C++ does the “best possible”.
int x; float y;
x = 2.5;
y = 123456789;
• x will become 2, since it can hold only

integers. Fractional part is dropped.
• 123456789 cannot be precisely represented

in 24 bits, so something like 1.234567 e 8 will
get stored.

Integer Division

int x=2, y=3, p=4, q=5, u;

u = x/y + p/q;

cout << p/y;

• x/y : both are int. So truncation. Hence 0

• p/q : similarly 0

• p/y : 4/3 after truncation will be 1

• So the output is 1

More Examples of Division

int noosides=100, i_angle1, i_angle2;
i_angle1 = 360/noosides + 0.45; // 3
i_angle2 = 360.0/noosides + 0.45; // 4

float f_angle1, f_angle2;
f_angle1 = 360/noosides + 0.1; // 3.1
f_angle2 = 360.0/noosides + 0.1 // 3.7

An Example Limited Precision

float w, y=1.5, avogadro=6.022e23;
w = y + avogadro;

• Actual sum : 602200000000000000000001.5
• y + avogadro will have type float, i.e. about 7 digits of

precision.
• With 7 digits of precision (223), all digits after the 7th will

get truncated and the value of avogadro will be the
same as the value of y + avogadro

• w will be equal to avogadro
• No effect of addition!

Program Example
main_program{

 double centigrade, fahrenheit;

 cout <<“Give temperature in Centigrade: ”;

 cin >> centigrade;

 fahrenheit = centigrade * 9 / 5 + 32;

 cout << “In Fahrenheit: ” << fahrenheit

 << endl; // newline

}

Prompting for input is meaningless in Prutor because it is non-interactive

Re-Assignment

int p=3, q=4, r;
r = p + q; // 7 stored into r
cout << r << endl; // 7 printed as the value of r
r = p * q; // 12 stored into r (could be its
 // temporary location)
cout << r << endl; // 12 printed as the value of r

• Same variable can be assigned a value again
• When a variable appears in a statement, its value at

the time of the execution of the statement gets used

In C++ "=" is assignment not "equal"
int p=12;
p = p+1;

See it as: p p+1; // Let p become p+1

Rule for evaluation:

• FIRST evaluate the RHS and THEN store the result into the LHS
variable

• So 1 is added to 12, the value of p
• The result, 13, is then stored in p
• Thus p finally becomes 13

p = p + 1 is nonsensical in mathematics
“=” in C++ is different from “=” in mathematics

Repeat And Reassignment

main_program{
int i=1;

 repeat(10){
 cout << i << endl;
 i = i + 1;
 }
}

This program will print 1, 2,…, 10 on separate lines

Another Idiom: Accumulation

main_program{
int term, s = 0;

 repeat(10){
 cin >> term;
 s = s + term;
 }
 cout << s << endl;
}

• Values read are accumulated into s
• Accumulation happens here using +
• We could use other operators too

Fundamental idiom

Sequence generation

• Can you make i take values 1, 3, 5, 7, …?

• Can you make i take values 1, 2, 4, 8, 16, …?

• Both can be done by making slight modifications to

previous program.

Composing The Two Idioms

Write a program to calculate n! given n.

main_program{
 int n, nfac=1, i=1;
 cin >> n;
 repeat(n){
 nfac = nfac * i;
 i = i + 1;
 }
 cout << nfac << endl;
}

Accummulation idiom

Sequence idiom

Finding Remainder

• x % y computes the remainder of dividing x by y
• Both x and y must be integer expressions
• Example

 d0 will equal 8 (the least significant digit of n)
 d1 will equal 7 (the second least significant digit of n)

int n=12345678, d0, d1;
d0 = n % 10; // 8
d1 = (n / 10) % 10; // 7

Some Additional Operators

• The fragment i = i + 1 is required very frequently, and so
can be abbreviated as i++
++ : increment operator. Unary

• Similarly we may write j-- which means j = j – 1
-- : decrement operator. Unary

Intricacies Of ++ and --

++ and –- can be written after or before the variable. Both
cause the variable to increment or decrement but with
subtle differences

int i=5, j=5, r, s;
 r = ++i;
 s = j++;
cout << "r= " << r << " s= " << s;

i,j both become 6 but r is 6 and s is 5.

++ and -– can be put inside expressions but not
recommended in good programming

Compound Assignment

The fragments of the form sum = sum + expression occur
frequently, and hence they can be shortened to sum +=
expression

Likewise you may have *=, -=, …

Example

int x=5, y=6, z=7, w=8;

x += z; // x becomes x+z = 12

y *= z+w; // y becomes y*(z+w) = 90

Blocks and Scope
• Code inside {} is called a

block.
• Blocks are associated with

repeats, but you may create
them otherwise too.

• You may declare variables
inside any block.

New summing program:
• The variable term is

defined close to where it is
used, rather than at the
beginning. This makes the
program more readable.

• But the execution of this
code is a bit involved.

// The summing program
// written differently.

main_program{
int s = 0;

 repeat(10){
 int term;
 cin >> term;
 s = s + term;
 }
 cout << s << term
<< endl;
}

How definitions in a block
execute

Basic rules
• A variable is defined/created every time control

reaches the definition.
• All variables defined in a block are destroyed

every time control reaches the end of the block.
• “Creating” a variable is only notional; the compiler

simply starts using that region of memory from
then on.

• Likewise “destroying” a variable is notional.
• New summing program executes exactly like the

old, it just reads different (better!).

Shadowing and scope
• Variables defined outside a block can be used

inside the block, if no variable of the same name
is defined inside the block.

• If a variable of the same name is defined, then
from the point of definition to the end of the block,
the newly defined variable gets used.

• The new variable is said to “shadow” the old
variable.

• The region of the program where a variable
defined in a particular definition can be used is
said to be the scope of the definition.

Example
main_program{
 int x=5;
 cout << x << endl; // prints 5
 {
 cout << x << endl; // prints 5
 int x = 10;
 cout << x << endl; // prints 10
 }
 cout << x << endl; // prints 5
}

Concluding Remarks

Variables are regions of memory which can store values
Variables have a type, as decided at the time of creation
Choose variable names to fit the purpose for which the

variable is defined
The name of the variable may refer to the region of memory

(if the name appears on the left hand side of an
assignment), or its value (if the name appears on the
right hand side of an assignment)

Further Remarks

Expressions in C++ are similar to those in mathematics,
except that values may get converted from integer to real
or vice versa and truncation might happen

Truncation may also happen when values get stored into a
variable

Sequence generation and accumulation are very common
idioms

Increment/decrement operators and compound assignment
operators also are commonly used (they are not found in
mathematics)

More Remarks

Variables can be defined inside any block

Variables defined outside a block may get shadowed by
variables defined inside

SAFE quiz
• What is the result of evaluating the

expression (3+2)/4?
• What is printed by this code snippet: "float

f=6.022E23; float r=f+2-f; cout<<r;"?
• What is printed by this code snippet: "int

t=10; repeat(2){t=t-1.2;} cout<<t;"?
• What is printed by this code: "int i=2, j=3,

k=4; i=j; j=k; k=i; cout << (i*j*k)"?
• What is the result of evaluating the

expression (5+2)/5*1.1?

