
CS 101:
Computer Programming and

Utilization

About These Slides

• Based on Chapter 3 and 4 of the book
An Introduction to Programming Through C++
by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade
– First update by Varsha Apte
– Second update by Uday Khedker
– Third update by Sunita Sarawagi

A Program Design Example

How To Write Programs

So far, we wrote very simple programs
Simple programs can be written intuitively
Even slightly complex programs should be written with some

care and planning
You must try to ensure that your program works correctly no

matter what input is given to it
This is tricky even for slightly complex programs
As a professional programmer, you must remember that an

incorrect program could cause a plane to crash, an X-ray
machine to supply the wrong amount of radiation: your
program may be controlling such devices

Program Development Strategy

1. Writing specification
2. Constructing test cases
3. Thinking how to solve the problem on pencil and paper
4. Writing out your ideas formally and making a plan
5. Writing the program
6. Checking mentally if your program is following your plan,

or if you made a mistake in writing the program
7. Running the test cases
8. Redoing steps if some test cases fail

Program Development Strategy

Write specification
(i.e. - exact input,

exact output)

Construct testcases

Figure out how you
would solve the

problem on a
paper and write the

steps

Write the program

Check that the
program is correct,
by reasoning and

by running testcases

Repeat steps if
wrong

The Problem

The following series approaches e as n increases:

e = 1/0! + 1/1! + 1/2! + … + 1/n!

Write a program which takes n as input and prints the sum

of the above series

The Specification

• Usually, the problem will be specified in real life terms,
where there may be some ambiguity, or possibilities of
confusion. So it is desirable to write to write down what
is given and what is needed very precisely

• Specification: A statement of what is the input and the
corresponding output. Clear description of when the
output is to be considered correct

The Specification For Our Problem

Input: an integer n, where n ≥ 0
Output: The sum 1/0! + … + 1/n!

• This is simple enough, but note that we have made explicit
that n cannot be a negative number

• Also, it is worth reading this carefully yourself and asking,
can something be misunderstood in this?

• You may realize that carelessly, you may think of n as also
being the number of terms to be added up.

• The number of terms being added together is n+1.
• The number of additions is indeed n, however

Constructing Test Cases
• Write down some specific input values, and the

corresponding expected output values
• This will help ensure that you understand the problem and

cross-check the specification you wrote
• 3 test cases are enough for this simple problem

− For n=0, clearly the answer must be 1
− For n=1, answer = 1+1/1! = 2
− For n=2, answer = 1+1/1!+1/2! = 2.5
− We can put the test cases into a table:

Input (n) 0 1 2
Output 1 2 2.5

Designing the Algorithm (1)
Solving the problem by pencil and paper

− Calculate the first term, 1/0!, which is just 1
− Calculate the second term, 1/1! which is just 1. Add to 1
− Calculate the third term, 1/2!, add to sum so far
− Calculate the fourth term 1/3! …

Now, you can calculate the fourth term by observing that it is
just the third term multiplied by 1/3:
− 1/3! = 1/2! * 1/3

This idea will save work in your program too
But you need to find the general pattern, which is:

− 1/t! = 1/(t-1)! * 1/t
So now you can think of a program

What Variables To Use

• When we solve on paper, we write many numbers; we
do not need separate variables to store them

• As you calculate on paper, identify the numbers that are
reused. These must be stored in a variable. Usually
these will be few

• We need to keep track of the sum, so clearly we need a
variable for it: let us call it result

• We generate the tth term from the t-1th. So we need to
remember the previous term. Store it as variable term

• According to our general pattern, we also need to
remember t, so we will have a variable i for that

A Program Sketch
There are (n+1) terms
We need to perform n additions. Clearly we should have a
loop for that
So our program should have the following form

main_program{
int n; cin >> n;
double i = …, term = …, result = …;
repeat(n){

…
}
cout << result << endl;

}

Filling in the Details (1)

• If n is given as 0, then the loop does not execute even

once, and the result is printed

– The value that is printed is the value we initialize

result with

– Since we want 1 to be printed, we must initialize result

= 1

Filling in the Details (2)

• We next decide what values (i, term) should have when
we enter the loop for the tth time, where t=1, 2, …, n

• In the loop iterations the terms 1/1!, 1/2!, 1/3!....1/n!
need to get added one by one into the variable result

• We can do this in the following way. When we enter the
loop the tth time
– i has the value t-1
– term has the value 1/(t-1)! i.e. the value of the

previous term added
– result has the sum till 1/(t-1)!

Filling in the Details (3)

• So on entering for the first time, i.e. when t=1:
– i should have the value t-1 = 0
– term must have the value (t-1)!=1

• Thus before the loop we must initialize
– i=0; term=1;

• Inside the loop we have to add the next term to result.
But i and term holds the previous values
– So the first statement in the loop should be:
– i = i+ 1;

• i now has the value t. So Next statement is:
– term = term/i

• Now we have to add this into result. So we have:
– result = result + term

• Now result has the sum upto 1/t!, so tth iteration is
complete, and coding is done

The Final Code

main_program{
int n; cin >> n;
int i=0;

 double term = 1, result = 1;
repeat(n) { // On entry for tth time, t=1..n

 // i=t-1, term=1/(t-1)!
 // result =1/0!+..+1/(t-1)!

 i = i + 1; // now i = t
 term = term/i; // now term = 1/t!
 result = result + term; // now result =1+..+1/t!

 }
cout << result << endl;

}

Code Review

It is useful to go over the code again to see that the values
of the variables indeed satisfy what we say about them

Specially check: will the values of the variables agree with
what we say about them on the t+1th iteration?

Testing

• Next, compile and run the program for the
test cases you generated.

• Check if the program output agrees with
what was in the table.

• If the program does not agree, you are
said to have a bug.

• Now you must remove the bug, or debug.

Debugging
• Simplest strategy: print intermediate results.
main_program{

int n; cin >> n;
int i=0, term = 1, result = 1;
repeat(n){// On tth entry, t=1..n

 // i=t, term=1/(t-1)!
 // result =1/0!+..+1/(t-1)!
 term = term / i
 result = result + term;

 // now result =1+..+1/t!
 i = i + 1;
 cout << i <<‘ ‘<< term <<’ ‘<< result << endl;
 }
 cout << result << endl;
}
• From the printed values you should know what is going wrong.

Concluding Remarks

• There are many, many ways to write a program.
• Most of them will have very similar statements, e.g.

i=i+1; term=term/i; which may appear in different orders
• Correctness requires the order to be right, and the

statement to be exactly right, i.e. cannot have
term=term/i if term=term/(i+1) is needed

• Having a plan and sticking to it is useful
• The plan must be stated as comments in code
• The input output test cases must be constructed and

also be written down, as a part of the code, or elsewhere
• Professional programs require all of the above and more

as due dilligence

Concluding Remarks 2

How you solve a problem on a computer is often similar to
how you solve it by hand

If a certain trick helps you save manual work, it may help on a
computer too

Finding the general pattern is very important

You may not deduce all the variables needed right at the
beginning, or may discover that the plan you formed does
not work. So do add more variables, or revise the plan.
But have a plan at all times

