
CS 101:
Computer Programming and

Utilization

About These Slides

• Based on Chapter 7 of the book
An Introduction to Programming Through C++
by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade
– First update by Varsha Apte
– Second update by Uday Khedker

The Need of a More General Loop

Read marks of students from the keyboard and print the
average
• Number of students not given explicitly
• If a negative number is entered as marks, then it is a

signal that all marks have been entered
 Examples

− Input: 98 96 -1, Output: 97
− Input: 90 80 70 60 -1, Output: 75

• The repeat statement repeats a fixed number of times.
Not useful

• We need a more general statement
while, do while, or for

Outline

The while statement
− Some simple examples
− Mark averaging

The break statement
The continue statement
The do while statement
The for statement

The WHILE Statement

while (condition)
body

next_statement

1. Evaluate the condition
If true, execute body. body can
be a single statement or a block,
in which case all the statements
in the block will be executed

2. Go back and execute from step 1
3. If false, execution of while

statement ends and control goes
to the next statement

The WHILE Statement

while (condition)

body

• The condition must eventually
become false, otherwise the
program will never halt. Not
halting is not acceptable

• If the condition is true originally,
then the value of some variable
used in condition must change
in the execution of body, so that
eventually condition becomes
false

• Each execution of the body =
iteration

WHILE Statement Flowchart

Condition

Body

Previous statement in the program

Next statement in the Program

False

True

A Program That Does Not Halt

main_program{

int x=10;

while(x > 0){

cout << “Iterating” << endl;

}

}

// Will endlessly keep printing

// Not a good program

A Program That Does Halt

main_program{
int x=3;
while(x > 0){

cout << “Iterating” << endl;
x--; // Same as x = x – 1;

}
}
// Will print “Iterating.” 3 times
// Good program (if that is what
// you want)!

Explanation

main_program{

int x=3;

while(x > 0){

cout << “Iterating” <<
endl;

x--;

}

}

• First x is assigned the
value 3

• Condition x > 0 is TRUE
• So body is executed

(prints Iterating)
• AFTER x-- is executed,

the value of x is 2

Explanation

main_program{

int x=3;

while(x > 0){

 cout << “Iterating” <<
endl;

x--;

}

}

• Again the condition is
evaluated. For x with
value 2, condition is still
TRUE

• So execute this

– print iterating

• Decrement x

• Value now is 1

Explanation

main_program{

int x=3;

while(x > 0){

cout << Iterating <<
endl;

x--;

}

}

• Again the condition is
evaluated. For x with
value 1, condition is still
TRUE

• So execute this

– print iterating

• Decrement x

• Value now is 0

Explanation

main_program{

int x=3;

while(x > 0){

cout << Iterating <<
endl;

x--;

}

}

• Again the condition is
evaluated. For x with
value 0, condition is still
FALSE

• So control goes outside
the body of the loop

• Program exits

WHILE vs. REPEAT

Anything you can do using repeat can be done using while
(but not vice-versa)

repeat(n){ any code }

Equivalent to

int i=n;

while(i>0){i--; any code}

This is a simplistic explanation

See file include/simplecpp for a more precise explanation

Mark Averaging

Natural strategy
1. Read the next value
2. If it is negative, then go to step 5, if it is >= 0, continue

to step 3
3. Add the value read to the sum of values read so far,

Add 1 to the count of values read so far.
4. Go to step 1
5. Print sum/count
A bit tricky to implement using while

Flowchart Of Mark Averaging vs.
Flowchart Of While

Flowchart of WHILE

Condition

Body

Previous statement in the program

Next statement in the Program

False

True

cin >> nextmark

Start

nextmark>=0

sum = sum + nextmark;
count = count + 1;

Calculate and print average

Flowchart of mark averaging

False

True

Flowchart Of Mark Averaging vs.
Flowchart Of WHILE

• In the flowchart of mark averaging, the first statement to
be repeated is not the condition check

• In the flowchart of while, the first statement to be
repeated, is the condition check

• So we cannot easily express mark averaging using while

Flowchart Of Mark Averaging vs. Flowchart of
WHILE

Start

Original

cin >> nextmark

nextmark>=0

sum = sum + nextmark;
count = count + 1;

False

True

A

B

C

cin >> nextmark

Start

nextmark>=0

sum = sum + nextmark;
count = count + 1;

False

cin >> nextmark A

A

C

B

Modified

A Different Flowchart For Mark Averaging

• Let's label the statements as A (input), C (condition),
and B (accumulation)

• The desired sequence of computation is

A-C-B A-C-B A-C-B ... A-C

• We just rewrite it is

A C-B-A C-B-A C-B-A ... C

• Thus we take input outside of the loop once and then
at the bottom of the loop body

Program

main_program{
 float nextmark, sum = 0;
 int count = 0;
 cin >> nextmark; // A
 while(nextmark >= 0){
 sum += nextmark; count++;
 cin >> nextmark; // copy of A!!
 }
 cout << sum/count << endl;
}

Remarks

• Often, we naturally think of flowcharts in which the
repetition does not begin with a condition check. In such
cases we must make a copy of the code, as we did in
our example

• Also remember that the condition at the beginning of the
while must say under what conditions we should enter
the loop, not when we should get out of the loop. Write
the condition accordingly

• Note that the condition can be specified as true, which is
always true. This may seem puzzling, since it appears
that the loop will never terminate. But this will be useful
soon..

Nested WHILE Statements

We can put one while statement inside another The
execution is as you might expect. Example:

What do you think this will print?

int i=3;
while(i > 0) {

i--;
int j=5;
while(j > 0){

j--;
cout << “A”;

 }
cout << endl;

}

The BREAK Statement

• The break keyword is a statement by itself

• When it is encountered in execution, the execution of

the innermost while statement which contains it is

terminated, and the execution continues from the next

statement following the while statement

Example of BREAK

main_program{
 float nextmark, sum = 0;
 int count = 0;
 while(true){

cin >> nextmark;
if(nextmark < 0)

break;
sum += nextmark;
count++;
}

 cout << sum/count << endl;
}

If break is executed,
control goes here, out of
the loop

Explanation

• In our mark averaging program, we did not want to check
the condition at the beginning of the repeated portion

• The break statement allows us just that!
• So we have specified the loop condition as true, but have

put a break inside
• The statements in the loop will repeatedly execute;

however when a negative number is read, the loop will be
exited immediately, without even finishing the current
iteration

• The break statement is of course useful in general

The CONTINUE Statement

• continue is another single word statement

• If it is encountered in execution, the control directly

goes to the beginning of the loop for the next

iteration, skipping the statements from the continue

statement to the end of the loop body

Example

Mark averaging with an additional condition :

• if a number > 100 is read, discard it (say because marks

can only be at most 100) and continue with the next

number. As before stop and print the average only when

a negative number is read

Code For New Mark Averaging

main_program{
 float nextmark, sum = 0;
 int count = 0;
 while (true){

cin >> nextmark;
if(nextmark > 100)
continue;
if(nextmark < 0)

break;
sum += nextmark;
count++;

 }
 cout << sum/count << endl;
}

If executed, the
control goes back to
condition evaluation

The DO-WHILE Statement

Not very common

Discussed in the book

The FOR Statement: Motivation
• Example: Write a program to print a table of cubes of

numbers from 1 to 100
nt i = 1;
repeat(100){
cout << i <<‘ ‘<< i*i*i << endl;
i++;

}
• This idiom: do something for every number between x

and y occurs very commonly
• The for statement makes it easy to express this idiom, as

follows:
for(int i=1; i<= 100; i++)
 cout << i <<‘ ‘<< i*i*i << endl;

The FOR Statement

for(initialization; condition; update)
 body
• initialization, update : Typically assignments (without

semi-colon)
• condition : boolean expression
• Before the first iteration of the loop the initialization is

executed
• Within each iteration the condition is first tested. If it fails,

the loop execution ends. If the condition succeeds, then
the body is executed. After that the update is executed.
Then the next iteration begins

Flowchart for FOR Statement

Initialization

Previous statement in the program

Condition

Body

Update

Next statement in the Program

False

True

Definition of Repeat

repeat(n)

is same as

for (int _iterator_i = 0, _iterator_limit = n;
 _iterator_i < _iterator_limit;
 _iterator_i ++)

Hence changing n in the loop will have no effect in the
number of iterations

Determining whether a number is
prime

main_program{
 int n; cin >> n;
 bool found = false;
 for(int i=2; i < n; i++){
 if(n % i == 0){

 found = true;
 break;
 }
 }
 if(found) cout << "Composite.\n";
 else cout << "Prime.\n";
}

Euclid's Algorithm For GCD

• Greatest Common Divisor (GCD) of positive integers m,
n :

largest positive integer p that divides both m, n

• Standard method: factorize m,n and multiply common
factors

• Euclid’s algorithm (2300 years old!) is different and much
faster

• A program based on Euclid’s method will be much faster
than program based on factoring

Euclid’s Algorithm

Basic Observation: If d divides both m, n, then d divides m-
n also, assuming m > n
Proof: m=ad, n=bd, so m-n=(a-b)d

Converse is also true: If d divides m-n and n, then it divides
m too

m, n, m-n have the same common divisors
The largest divisor of m,n is also the largest divisor of m-n,n
Observation: Instead of finding GCD(m,n), we might as well

find GCD(n, m-n)

Example

GCD(3977, 943)
=GCD(3977-943,943) = GCD(3034,943)
=GCD(3034-943,943) = GCD(2091,943)
=GCD(2091-943,943) = GCD(1148,943)
=GCD(1148-943,943) = GCD(205, 943)

We should realize at this point that 205 is just 3977 % 943
(repeated subtraction is division)

So we could have got to this point just in one shot by writing
GCD(3977,943) = GCD(3977 % 943, 943)

Example

Should we guess that GCD(m,n) = GCD(m%n, n)?

This is not true if m%n = 0, since we have defined GCD

only for positive integers. But we can save the situation, as

Euclid did

Euclid’s theorem: If m>n>0 are positive integers, then if n

divides m then GCD(m,n) = n. Otherwise GCD(m,n) =

GCD(m%n, n)

Example Continued

GCD(3977,943)

= GCD(3977 % 943, 943)

= GCD(205, 943) = GCD(205, 943%205)

= GCD(205,123) = GCD(205%123,123)

= GCD(82, 123) = GCD(82, 123%82)

= GCD(82, 41)

= 41 because 41 divides 82

Algorithm Our GCD Program

input: values M, N which are stored in variables m, n.
iteration : Either discover the GCD of M, N, or find smaller
numbers whose GCD is same as GCD of M, N

Details of an iteration:

At the beginning we have numbers stored in m, n, whose
GCD is the same as GCD(M,N).
If n divides m, then we declare n to be the GCD.
If n does not divide m, then we know that GCD(M,N) =
GCD(n, m%n)
So we have smaller numbers n, m%n, whose GCD is
same as GCD(M,N)

Program For GCD
main_program{

int m, n; cin >> m >> n;
while(m % n != 0){

int nextm = n;
int nextn = m % n;
m = nextm;
n = nextn;

}
cout << n << endl;

}
// To store n, m%n into m,n, we cannot
// just write m=n; n=m%n;
// Can you say why? Hint: take an example!

Remark

We have defined variables nextm, nextn for clarity

We could have done the assignment with just one variable
as follows

• int r = m%n; m = n; n = r;

It should be intuitively clear that in writing the program, we
have followed the idea from Euclid’s theorem. However,
having written the program, we should check this again

Termination and Correctness

• We wrote the program based on Euclid’s
theorem, but are we sure that it
– Terminates?
– Gives the correct answer?

• For any program, it is essential to argue
both these.

• This is done by defining
– Invariants
– “Potential”

Invariants

Let M, N be the values typed in by the user into variables m,
n

We can make the following claim

Just before and just after every iteration,

GCD(m,n) = GCD(M,N)

The values m and n change, M and N do not

Loop Invariant: A property (describing a pattern of values of
variables) which does not change due to the loop iteration.

Loop Invariant for GCD
main_program{

int m, n; cin >> m >> n; // Assume M, N
// Invariant: GCD(m,n) = GCD(M,N)

 // because m=M and n=N
while(m % n != 0){

int nextm = n; // the invariant may
int nextn = m % n; // not hold after
m = nextm; // these statements
n = nextn;

 // Invariant: GCD(m,n) = GCD(M,N)
 // inspite of the fact that m, n have changed

}
cout << n << endl;

}

Loop Invariant for GCD

GCD(3977,943) m=M=3977, n=N=943

= GCD(3977 % 943, 943)

= GCD(205, 943) = GCD(205, 943%205) m=205, n=943

= GCD(205,123) = GCD(205%123,123) m=205, n=123

= GCD(82, 123) = GCD(82, 123%82) m=205, n=123

= GCD(82, 41) m=82, n=41

= 41 because 41 divides 82

The Intuition Behind Loop Invariant

// Invariant holds here
while(m % n != 0) {

// Invariant holds at the start of the loop
 // The loop body may disturb the invariant
 // by changing the values of variables
 // but the invariant must hold at the start
 // of the next iteration
 // Hence invariant must be restored
 // Invariant must hold here too
 }

The Intuition Behind Loop Invariant
Previous statement in the program

The loop body may
disturb the invariant
but it must be restored
before beginning the
execution of the next
iteration

Condition

Body

Next statement in the Program

False

True

The invariant holds here
before the execution of the
loop begins

The invariant holds
here before the
execution every
subsequent
iteration

Proof of the Invariant in GCD Program

Clearly, the invariant is true just before the first iteration

In any iteration, the new values assigned to m,n are as per

Euclid’s theorem, and hence the invariant must be true at

the end, and hence at the beginning of the next iteration

But the above argument applies to all iterations

Proof of Termination
The only thing that remains is to show termination

• The value of the variable n must decrease in each iteration.
(because, nextn = m%n which must be smaller than n),

• But n must always be a positive integer in every iteration: (because
we enter an iteration only if m%n != 0, and then set nextn = m%n)

• Thus n cannot decrease indefinitely, it cannot go below 1
• n starts with the value N, thus the algorithm must terminate after at

most N iterations

This argument is called a potential function argument (Analogy:
Potential energy drops as system becomes less active) You have to
creatively choose the potential

Invariants in simple programs

• Correctness of very simple loops may be
obvious, and it may not be necessary to
write invariants etc.

• However, invariants can be written, and
they still make our intent more explicit.

• Example: Cube table program
Next

Invariants in the cube table
program

for(int i=1; i<=100; i++)
cout << i <<‘ ‘<<i*i*i<<endl;

• Invariant: Cubes until i-1 have been printed.
– True for every iteration!

• Potential: value of i : it must increase in
every step, but cannot increase beyond 100.

• For programs so simple, writing invariants
seems to make simple things unnecessarily
complex. But invariants are very useful when
programs are themselves complex/clever.

What is the Loop Invariant Here?

unsignd int x;
int y = 0;
while (x != y)
 y++;

• What is the loop invariant?
x >= y

• Is x == y after the loop terminates?
 We will shortly prove it

What is the Loop Invariant Here?

int j=9;
for (int i=0; i<10; i++)
 j--;

• 0 <= i < 10
• 0 <= i <=10

• i+j = 9
• i+j=9, 0<=i<=10

NO
Yes, but not precise (misses j)
(must also hold before condition
becomes false and loop ends)
Yes, but not precise
Yes, most precise

Is i+j=9 a Loop Invariant Here?

i=0

i < 10

j--

i++

False

True

j=9
Visit to the
condition

Value
of i

Value
of j

Loop body
executed?

1 0 9 Yes

2 1 8 Yes

3 2 7 Yes

4 3 6 Yes

5 4 5 Yes

6 5 4 Yes

7 6 3 Yes

8 7 2 Yes

9 8 1 Yes

10 9 0 No

Remarks

• while, do while, for are the C++ statements that allow

you to write loops

• repeat allows you to write a loop, but it is not a part of

C++ It is a part of simplecpp; it was introduced because

it is very easy to understand.

• Now that you know while, do while, for, you should stop

using repeat

Remarks

An important issues in writing a loop is how to break out
of the loop. You may not necessarily wish to break at the
beginning of the repeated portion. In which case you can
either duplicate code, or use break

