
CS 101: 
Computer Programming and 

Utilization



About These Slides

• Based on Chapter 8 of the book 
An Introduction to Programming Through C++ 
by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade
– First update by Varsha Apte
– Second update by Uday Khedker



Learn Methods For Common 
Mathematical Operations

• Evaluating common mathematical functions such as
Sin(x)
log(x)

• Integrating functions numerically, i.e. when you do not know 
the closed form

• Finding roots of functions, i.e. determining where the 
function becomes 0

• All the methods we study are approximate.  However, we 
can use them to get answers that have as small error as we 
want

• The programs will be simple, using just a single loop



Outline

• McLaurin Series (to calculate function values)

• Numerical Integration

• Bisection Method

• Newton-Raphson Method



MacLaurin Series

When x is close to 0:
f(x) = f(0) + f'(0)x  + f''(0)x2 / 2!   
         + f'''(0)x3 / 3! + …

E.g. if f(x) = sin x
   f(x) = sin(x),       f(0) = 0
  f'(x) = cos(x),     f'(0) = 1
 f''(x) = -sin(x),    f''(0) = 0
 f'''(x) = -cos(x),  f'''(0) = -1
f''''(x) = sin(x),   f''''(0) = 0

Now the pattern will repeat



Example

Thus sin(x) = x – x3/3! + x5/5! – x7/7! …

A fairly accurate value of sin(x) can be obtained by using 

sufficiently many terms 

Error after taking i terms is at most the absolute value of 

the i+1th term



Program Plan-High Level

sin(x) = x – x3/3! + x5/5! – x7/7! …

Use the accumulation idiom

Use a variable called term 

This will keep taking successive values of the terms

Use a variable called sum

Keep adding term into this variable



Program Plan: Details

sin(x) = x – x3/3! + x5/5! – x7/7! …

• Sum can be initialized to the value of the first term So 
sum = x

• Now we need to figure out initialization of term and it's 
update

• First figure out how to get the kth term from the (k-1) th 
term



Program Plan: Terms

sin(x) = x – x3/3! + x5/5! – x7/7! …

Let tk = kth term of the series, k=1, 2, 3…

tk = (-1)k+1x2k-1/(2k-1)! 

tk-1 = (-1)kx2k-3/(2k-3)! 

tk = (-1)kx2k-3/(2k-3)!  * (-1)(x2)/((2k-2)(2k-1))   

  =  - tk-1 (x)2/((2k-2)(2k-1)



Program Plan
• Loop control variable will be k
• In each iteration we calculate tk from tk-1

• The  term tk is added to sum
• A variable term will keep track of tk

At the beginning of kth iteration, term will have the value 
tk-1, and at the end of kth iteration it will have the value tk

• After kth iteration, sum will have the value = sum of the 
first k terms of the Taylor series

• Initialize sum = x, term = x
• In the first iteration of the loop we calculate the sum of 2 

terms.  So initialize k = 2
• We stop the loop when term becomes small enough



Program

main_program{
double x; cin >> x;
double epsilon = 1.0E-20; // arbitrary.
double sum = x, term = x;
for(int k=2; abs(term) > epsilon; k++){

         term *= -x*x / (2*k – 1) / (2*k – 2);
         sum += term;
    }
     cout << sum << endl;
}
    



Numerical Integration (General)

Integral from p to q = area under curve

Approximate area by rectangles

p q

f



Plan (General)

• Read in p, q                                    (assume p < q)
• Read in n = number of rectangles
• Calculate w = width of rectangle = (q-p)/n
• ith rectangle, i=0,1,…,n-1 begins at p+iw
• Height of ith rectangle = f(p+iw)
• Given the code for f, we can calculate height and width 

of each rectangle and so we can add up the areas



Example: Numerical Integration To 
Calculate ln(x)

double x; cin >> x;
double n; cin >> n;
double w = (x-1)/n;    // width of each rectangle
double area = 0;
for(int i=0; i<n; i++)

area = area + w * 1/(1+i*w);
cout << area << endl;

ln(x) = natural logarithm 
= ∫1/x dx                                     from 1 to x
= area under the curve f(x)=1/x from 1 to x



Remarks

• By increasing n, we can get our rectangles closer to the 
actual function, and thus reduce the error

• However, if we use too many rectangles, then there is 
roundoff error in every area calculation which will get 
added up

• We can reduce the error also by using trapeziums instead 
of rectangles, or by setting rectangle height = function 
value at the midpoint of its width
Instead of  f(p+iw), use f(p+iw + w/2)

• For calculation of ln(x), you can check your calculation by 
calling built-in function log(x)



Bisection Method For Finding Roots

• Root of function f: Value x such that f(x)=0
• Many problems can be expressed as finding roots, 

e.g. square root of w is the same as root of f(x) = x2 – 
w

• Requirement:
− Need to be able to evaluate f
− f must be continuous
− We must be given points xL and xR such that f(xL) 

and f(xR) are not both positive or both negative



Bisection Method For Finding Roots

xL
xRxM

• Because of continuity, there must 
be a root between xL and xR (both 
inclusive)

• Let xM = (xL + xR)/2 = midpoint of 
interval (xL, xR)

• If f(xM) has same sign as f(xL), 
then f(xM), f(xR) have different 
signs
So we can set xL = xM and 
repeat

• Similarly if f(xM) has same sign as 
f(xR)

• In each iteration, xL, xR are 
coming closer.

• When they come closer than 
certain epsilon, we can declare xL 
as the root 



Bisection Method For Finding Square 
Root of 2

• Same as finding the root of 
x2 - 2 = 0

• Need to support both 
scenarios:
− xL is negative, xR is 

positive
− xL is positive, xR is 

negative
• We have to check if xM has 

the same sign as xL or xR



Bisection Method for Finding √2 
double xL=0, xR=2, xM, epsilon=1.0E-20;

// Invariant: xL < xR
while(xR – xL >= epsilon){      // Interval is still large
  xM = (xL+xR)/2;                  // Find the middle point
  bool xMisNeg = (xM*xM – 2) < 0;  
  if(xMisNeg)                         // xM is on the side of xL
              xL = xM;
  else xR = xM;                     // xM is on the side of xR
  // Invariants continues to remain true
}
cout << xL << endl;



 Newton Raphson method

• Method to find the root of  f(x),  i.e. x  s.t.  f(x)=0

• Method works if:

    f(x) and derivative f'(x) can be easily calculated

    A good initial guess x0 for the root is available

• Example: To find square root of y

    use f(x) = x2 - y.   f'(x) = 2x

    f(x), f'(x) can be calculated easily.  2,3 arithmetic ops

• Initial guess x0 = 1 is good enough!



How To Get Better xi+1 Given xi

f(x)
xixi+1

Point A =(xi,0) known
 

A

B

C

 xi+1= xi – AC = xi - AB/(AB/AC) = xi- f(xi) / f'(xi)

Calculate f(xi )
Point B=(xi,f(xi))

Draw the tangent to f(x)
C= intercept on x axis 
C=(xi+1,0) 
f'(xi) = derivative 
       = (d f(x))/dx    at xi
       ≈ AB/AC



Square root of  y

xi+1 = xi- f(xi) / f'(xi)

f(x) = x2 - y,      f'(x) = 2x

xi+1  = xi - (xi
2 - y)/(2xi) = (xi + y/xi)/2

Starting with x0=1, we compute x1, then x2, …

We can get as close to sqrt(y) as required

      

Proof not part of the course.



Computing √y Using the Newton 
Raphson Method

float y;  cin >> y;

float xi=1;    // Initial guess. Known to work

repeat(10){  // Repeating a fixed number of times

    xi = (xi + y/xi)/2;

}

cout << xi;



How To Iterate Until Error Is Small

xi

root

Error

Error Estimate = |f(xi)|= |xi*xi – y| 



Make |xi*xi – y| Small

float y; cin >> y;

float xi=1;

while(abs(xi*xi – y) > 0.001){

    xi = (xi + y/xi)/2 ;

} 

cout << xi;



Concluding Remarks

If you want to find f(x), then 
use MacLaurin series for f, if f and its derivatives can be 
evaluated at 0
Express f as an integral of some easily evaluable 
function g, and use numerical integration
Express f as the root of some easily evaluable function g, 
and use bisection or Newton-Raphson

All the methods are iterative, i.e. the accuracy of the 
answer improves with each iteration


