
CS 101:
Computer Programming and

Utilization

About These Slides

• Based on Chapter 8 of the book
An Introduction to Programming Through C++
by Abhiram Ranade (Tata McGraw Hill, 2014)

• Original slides by Abhiram Ranade
– First update by Varsha Apte
– Second update by Uday Khedker

Learn Methods For Common
Mathematical Operations

• Evaluating common mathematical functions such as
Sin(x)
log(x)

• Integrating functions numerically, i.e. when you do not know
the closed form

• Finding roots of functions, i.e. determining where the
function becomes 0

• All the methods we study are approximate. However, we
can use them to get answers that have as small error as we
want

• The programs will be simple, using just a single loop

Outline

• McLaurin Series (to calculate function values)

• Numerical Integration

• Bisection Method

• Newton-Raphson Method

MacLaurin Series

When x is close to 0:
f(x) = f(0) + f'(0)x + f''(0)x2 / 2!
 + f'''(0)x3 / 3! + …

E.g. if f(x) = sin x
 f(x) = sin(x), f(0) = 0
 f'(x) = cos(x), f'(0) = 1
 f''(x) = -sin(x), f''(0) = 0
 f'''(x) = -cos(x), f'''(0) = -1
f''''(x) = sin(x), f''''(0) = 0

Now the pattern will repeat

Example

Thus sin(x) = x – x3/3! + x5/5! – x7/7! …

A fairly accurate value of sin(x) can be obtained by using

sufficiently many terms

Error after taking i terms is at most the absolute value of

the i+1th term

Program Plan-High Level

sin(x) = x – x3/3! + x5/5! – x7/7! …

Use the accumulation idiom

Use a variable called term

This will keep taking successive values of the terms

Use a variable called sum

Keep adding term into this variable

Program Plan: Details

sin(x) = x – x3/3! + x5/5! – x7/7! …

• Sum can be initialized to the value of the first term So
sum = x

• Now we need to figure out initialization of term and it's
update

• First figure out how to get the kth term from the (k-1) th
term

Program Plan: Terms

sin(x) = x – x3/3! + x5/5! – x7/7! …

Let tk = kth term of the series, k=1, 2, 3…

tk = (-1)k+1x2k-1/(2k-1)!

tk-1 = (-1)kx2k-3/(2k-3)!

tk = (-1)kx2k-3/(2k-3)! * (-1)(x2)/((2k-2)(2k-1))

 = - tk-1 (x)2/((2k-2)(2k-1)

Program Plan
• Loop control variable will be k
• In each iteration we calculate tk from tk-1

• The term tk is added to sum
• A variable term will keep track of tk

At the beginning of kth iteration, term will have the value
tk-1, and at the end of kth iteration it will have the value tk

• After kth iteration, sum will have the value = sum of the
first k terms of the Taylor series

• Initialize sum = x, term = x
• In the first iteration of the loop we calculate the sum of 2

terms. So initialize k = 2
• We stop the loop when term becomes small enough

Program

main_program{
double x; cin >> x;
double epsilon = 1.0E-20; // arbitrary.
double sum = x, term = x;
for(int k=2; abs(term) > epsilon; k++){

 term *= -x*x / (2*k – 1) / (2*k – 2);
 sum += term;
 }
 cout << sum << endl;
}

Numerical Integration (General)

Integral from p to q = area under curve

Approximate area by rectangles

p q

f

Plan (General)

• Read in p, q (assume p < q)
• Read in n = number of rectangles
• Calculate w = width of rectangle = (q-p)/n
• ith rectangle, i=0,1,…,n-1 begins at p+iw
• Height of ith rectangle = f(p+iw)
• Given the code for f, we can calculate height and width

of each rectangle and so we can add up the areas

Example: Numerical Integration To
Calculate ln(x)

double x; cin >> x;
double n; cin >> n;
double w = (x-1)/n; // width of each rectangle
double area = 0;
for(int i=0; i<n; i++)

area = area + w * 1/(1+i*w);
cout << area << endl;

ln(x) = natural logarithm
= ∫1/x dx from 1 to x
= area under the curve f(x)=1/x from 1 to x

Remarks

• By increasing n, we can get our rectangles closer to the
actual function, and thus reduce the error

• However, if we use too many rectangles, then there is
roundoff error in every area calculation which will get
added up

• We can reduce the error also by using trapeziums instead
of rectangles, or by setting rectangle height = function
value at the midpoint of its width
Instead of f(p+iw), use f(p+iw + w/2)

• For calculation of ln(x), you can check your calculation by
calling built-in function log(x)

Bisection Method For Finding Roots

• Root of function f: Value x such that f(x)=0
• Many problems can be expressed as finding roots,

e.g. square root of w is the same as root of f(x) = x2 –
w

• Requirement:
− Need to be able to evaluate f
− f must be continuous
− We must be given points xL and xR such that f(xL)

and f(xR) are not both positive or both negative

Bisection Method For Finding Roots

xL
xRxM

• Because of continuity, there must
be a root between xL and xR (both
inclusive)

• Let xM = (xL + xR)/2 = midpoint of
interval (xL, xR)

• If f(xM) has same sign as f(xL),
then f(xM), f(xR) have different
signs
So we can set xL = xM and
repeat

• Similarly if f(xM) has same sign as
f(xR)

• In each iteration, xL, xR are
coming closer.

• When they come closer than
certain epsilon, we can declare xL
as the root

Bisection Method For Finding Square
Root of 2

• Same as finding the root of
x2 - 2 = 0

• Need to support both
scenarios:
− xL is negative, xR is

positive
− xL is positive, xR is

negative
• We have to check if xM has

the same sign as xL or xR

Bisection Method for Finding √2
double xL=0, xR=2, xM, epsilon=1.0E-20;

// Invariant: xL < xR
while(xR – xL >= epsilon){ // Interval is still large
 xM = (xL+xR)/2; // Find the middle point
 bool xMisNeg = (xM*xM – 2) < 0;
 if(xMisNeg) // xM is on the side of xL
 xL = xM;
 else xR = xM; // xM is on the side of xR
 // Invariants continues to remain true
}
cout << xL << endl;

 Newton Raphson method

• Method to find the root of f(x), i.e. x s.t. f(x)=0

• Method works if:

 f(x) and derivative f'(x) can be easily calculated

 A good initial guess x0 for the root is available

• Example: To find square root of y

 use f(x) = x2 - y. f'(x) = 2x

 f(x), f'(x) can be calculated easily. 2,3 arithmetic ops

• Initial guess x0 = 1 is good enough!

How To Get Better xi+1 Given xi

f(x)
xixi+1

Point A =(xi,0) known

A

B

C

 xi+1= xi – AC = xi - AB/(AB/AC) = xi- f(xi) / f'(xi)

Calculate f(xi)
Point B=(xi,f(xi))

Draw the tangent to f(x)
C= intercept on x axis
C=(xi+1,0)
f'(xi) = derivative
 = (d f(x))/dx at xi
 ≈ AB/AC

Square root of y

xi+1 = xi- f(xi) / f'(xi)

f(x) = x2 - y, f'(x) = 2x

xi+1 = xi - (xi
2 - y)/(2xi) = (xi + y/xi)/2

Starting with x0=1, we compute x1, then x2, …

We can get as close to sqrt(y) as required

Proof not part of the course.

Computing √y Using the Newton
Raphson Method

float y; cin >> y;

float xi=1; // Initial guess. Known to work

repeat(10){ // Repeating a fixed number of times

 xi = (xi + y/xi)/2;

}

cout << xi;

How To Iterate Until Error Is Small

xi

root

Error

Error Estimate = |f(xi)|= |xi*xi – y|

Make |xi*xi – y| Small

float y; cin >> y;

float xi=1;

while(abs(xi*xi – y) > 0.001){

 xi = (xi + y/xi)/2 ;

}

cout << xi;

Concluding Remarks

If you want to find f(x), then
use MacLaurin series for f, if f and its derivatives can be
evaluated at 0
Express f as an integral of some easily evaluable
function g, and use numerical integration
Express f as the root of some easily evaluable function g,
and use bisection or Newton-Raphson

All the methods are iterative, i.e. the accuracy of the
answer improves with each iteration

