CS 101:
 Computer Programming and Utilization

Jan-Apr 2016
Uday Khedker
(cs101@cse.iitb.ac.in)

Lecture 9: Common Mathematical
Functions

About These Slides

- Based on Chapter 8 of the book An Introduction to Programming Through C++ by Abhiram Ranade (Tata McGraw Hill, 2014)
- Original slides by Abhiram Ranade
- First update by Varsha Apte
- Second update by Uday Khedker

Learn Methods For Common Mathematical Operations

- Evaluating common mathematical functions such as Sin(x) $\log (x)$
- Integrating functions numerically, i.e. when you do not know the closed form
- Finding roots of functions, i.e. determining where the function becomes 0
- All the methods we study are approximate. However, we can use them to get answers that have as small error as we want
- The programs will be simple, using just a single loop

Outline

- McLaurin Series (to calculate function values)
- Numerical Integration
- Bisection Method
- Newton-Raphson Method

MacLaurin Series

When x is close to 0 :

$$
\begin{aligned}
f(x)= & f(0)+f^{\prime}(0) x+f^{\prime \prime}(0) x^{2} / 2! \\
& +f^{\prime \prime}(0) x^{3} / 3!+\ldots
\end{aligned}
$$

E.g. if $f(x)=\sin x$

$$
\begin{aligned}
f(x) & =\sin (x), & f(0) & =0 \\
f^{\prime}(x) & =\cos (x), & f^{\prime}(0) & =1 \\
f^{\prime \prime}(x) & =-\sin (x), & f^{\prime \prime}(0) & =0 \\
f^{\prime \prime \prime}(x) & =-\cos (x), & f^{\prime \prime \prime}(0) & =-1 \\
f^{\prime \prime \prime}(x) & =\sin (x), & f^{\prime \prime \prime}(0) & =0
\end{aligned}
$$

Now the pattern will repeat

Example

Thus $\sin (x)=x-x^{3} / 3!+x^{5} / 5!-x^{7} / 7!\ldots$

A fairly accurate value of $\sin (x)$ can be obtained by using sufficiently many terms

Error after taking i terms is at most the absolute value of the $\mathrm{i}+1$ th term

Program Plan-High Level

$\sin (x)=x-x^{3} / 3!+x^{5} / 5!-x^{7 / 7}!\ldots$

Use the accumulation idiom
Use a variable called term
This will keep taking successive values of the terms
Use a variable called sum
Keep adding term into this variable

Program Plan: Details

$\sin (x)=x-x^{3} / 3!+x^{5} / 5!-x^{7} / 7!\ldots$

- Sum can be initialized to the value of the first term So sum $=x$
- Now we need to figure out initialization of term and it's update
- First figure out how to get the k th term from the $(k-1)$ th term

Program Plan: Terms

$$
\sin (x)=x-x^{3} / 3!+x^{5} / 5!-x^{7} / 7!\ldots
$$

Let $t_{k}=k t h$ term of the series, $k=1,2,3 \ldots$
$t_{k}=(-1)^{k+1} x^{2 k-1} /(2 k-1)!$
$t_{k-1}=(-1)^{k} x^{2 k-3 /(2 k-3)!}$
$t_{k}=(-1) x^{2 k-3 /(2 k-3)!}{ }^{*}(-1)\left(x^{2}\right) /((2 k-2)(2 k-1))$
$=-\mathrm{t}_{\mathrm{k}-1}(\mathrm{x})^{2} /((2 \mathrm{k}-2)(2 \mathrm{k}-1)$

Program Plan

- Loop control variable will be k
- In each iteration we calculate t_{k} from $\mathrm{t}_{\mathrm{k}-1}$
- The term t_{k} is added to sum
- A variable term will keep track of t_{k}

At the beginning of $k^{\text {th }}$ iteration, term will have the value t_{k-1}, and at the end of $k^{\text {th }}$ iteration it will have the value t_{k}

- After $k^{\text {th }}$ iteration, sum will have the value $=$ sum of the first k terms of the Taylor series
- Initialize sum = x, term = x
- In the first iteration of the loop we calculate the sum of 2 terms. So initialize $\mathrm{k}=2$
- We stop the loop when term becomes small enough

Program

main_program\{

double x; cin >> x;
double epsilon $=1.0 \mathrm{E}-20 ; / /$ arbitrary.
double sum $=x$, term $=x$;
for(int k=2; abs(term) > epsilon; $k++$) \{ term *= -x*x / (2*k -1$) /\left(2^{*} k-2\right) ;$
sum += term;
\}
cout << sum << endl;

Numerical Integration (General)

Integral from p to $q=$ area under curve
Approximate area by rectangles

Plan (General)

- Read in p, q
- Read in $\mathrm{n}=$ number of rectangles
- Calculate $w=$ width of rectangle $=(q-p) / n$
- ith rectangle, $i=0,1, \ldots, n-1$ begins at $p+i w$
- Height of ith rectangle $=f(p+i w)$
- Given the code for f, we can calculate height and width of each rectangle and so we can add up the areas

Example: Numerical Integration To Calculate $\operatorname{In}(x)$

$\ln (x)=$ natural logarithm
$=\int 1 / x d x$
from 1 to x
$=$ area under the curve $f(x)=1 / x$ from 1 to x
double x ; cin >> x ;
double n; cin >> n;
double $w=(x-1) / n ; \quad / /$ width of each rectangle
double area $=0$;
for(int i=0; i<n; i++)
area $=$ area $+w^{*} 1 /\left(1+i^{*} w\right)$;
cout << area << endl;

Remarks

- By increasing n, we can get our rectangles closer to the actual function, and thus reduce the error
- However, if we use too many rectangles, then there is roundoff error in every area calculation which will get added up
- We can reduce the error also by using trapeziums instead of rectangles, or by setting rectangle height = function value at the midpoint of its width Instead of $f(p+i w)$, use $f(p+i w+w / 2)$
- For calculation of $\ln (x)$, you can check your calculation by calling built-in function $\log (x)$

Bisection Method For Finding Roots

- Root of function f : Value x such that $f(x)=0$
- Many problems can be expressed as finding roots, e.g. square root of w is the same as root of $f(x)=x^{2}-$ w
- Requirement:
- Need to be able to evaluate f
- f must be continuous
- We must be given points x_{L} and x_{R} such that $f\left(x_{L}\right)$ and $f\left(x_{R}\right)$ are not both positive or both negative

Bisection Method For Finding Roots

- Because of continuity, there must be a root between x_{L} and x_{R} (both inclusive)
- Let $x_{M}=\left(x_{L}+x_{R}\right) / 2=$ midpoint of interval (x_{L}, x_{R})
- If $f\left(X_{M}\right)$ has same sign as $f\left(x_{L}\right)$, then $f\left(x_{M}\right), f\left(x_{R}\right)$ have different signs
So we can set $X_{L}=x_{M}$ and repeat
- Similarly if $f\left(x_{M}\right)$ has same sign as $\mathrm{f}\left(\mathrm{x}_{\mathrm{R}}\right)$
- In each iteration, x_{L}, x_{R} are coming closer.
- When they come closer than certain epsilon, we can declare x_{L} as the root

Bisection Method For Finding Square Root of 2

- Same as finding the root of $x^{2}-2=0$
- Need to support both scenarios:
$-x L$ is negative, $x R$ is positive
$-x L$ is positive, $x R$ is negative
- We have to check if $x \mathrm{M}$ has the same sign as $x L$ or $x R$

Bisection Method for Finding $\sqrt{ } 2$

double $x L=0, x R=2, x M$, epsilon=1.0E-20;
// Invariant: $x L<x R$
while($x R-x L>=e p s i l o n)\{\quad / /$ Interval is still large
$x M=(x L+x R) / 2 ; \quad / /$ Find the middle point
bool x MisNeg $=\left(x M^{*} x M-2\right)<0$;
if(xMisNeg) // xM is on the side of xL

$$
x L=x M ;
$$

else $x R=x M$;
// $x M$ is on the side of $x R$
// Invariants continues to remain true
\}
cout << xL << endl;

Newton Raphson method

- Method to find the root of $f(x)$, i.e. x s.t. $f(x)=0$
- Method works if:
$f(x)$ and derivative $f^{\prime}(x)$ can be easily calculated
A good initial guess x_{0} for the root is available
- Example: To find square root of y
use $f(x)=x^{2}-y . \quad f^{\prime}(x)=2 x$
$f(x), f^{\prime}(x)$ can be calculated easily. 2,3 arithmetic ops
- Initial guess $x_{0}=1$ is good enough!

How To Get Better $\mathrm{x}_{\mathrm{i}+1}$ Given X_{i}

Point $\mathrm{A}=\left(\mathrm{x}_{\mathrm{i}}, 0\right)$ known
Calculate $f\left(x_{i}\right)$
Point $B=\left(\mathrm{x}_{\mathrm{i}}, \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)\right)$
Draw the tangent to $f(x)$
C= intercept on x axis
$\mathrm{C}=\left(\mathrm{x}_{\mathrm{i}+1}, 0\right)$
$\mathrm{f}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right)=$ derivative

$$
=(\mathrm{d} f(\mathrm{x})) / \mathrm{dx} \quad \text { at } \mathrm{x}_{\mathrm{i}}
$$

$$
\approx \mathrm{AB} / \mathrm{AC}
$$

$$
x_{i+1}=x_{i}-A C=x_{i}-A B /(A B / A C)=x_{i}-f\left(x_{i}\right) / f^{\prime}\left(x_{i}\right)
$$

Square root of y

$$
\begin{aligned}
& x_{i+1}=x_{i}-f\left(x_{i}\right) / f^{\prime}\left(x_{i}\right) \\
& f(x)=x^{2}-y, \quad f^{\prime}(x)=2 x \\
& x_{i+1}=x_{i}-\left(x_{i}^{2}-y\right) /\left(2 x_{i}\right)=\left(x_{i}+y / x_{i}\right) / 2
\end{aligned}
$$

Starting with $\mathrm{x}_{0}=1$, we compute x_{1}, then x_{2}, \ldots
We can get as close to sqrt(y) as required

Proof not part of the course.

Computing $\sqrt{ } \mathrm{y}$ Using the Newton Raphson Method

float y ; cin >> y ;
float xi=1; // Initial guess. Known to work
repeat(10)\{ // Repeating a fixed number of times

$$
x i=(x i+y / x i) / 2 ;
$$

\}
cout << xi;

How To Iterate Until Error Is Small

Error Estimate $=\left|f\left(x_{i}\right)\right|=\left|x_{i}{ }^{*} x_{i}-y\right|$

Make $\left|x_{i}{ }^{*} x_{i}-y\right|$ Small

```
float y; cin >> y;
float xi=1;
while(abs(xi*xi - y) > 0.001){
    xi = (xi + y/xi)/2 ;
cout << xi;
```


Concluding Remarks

If you want to find $f(x)$, then
use MacLaurin series for f , if f and its derivatives can be evaluated at 0

Express f as an integral of some easily evaluable function g , and use numerical integration
Express f as the root of some easily evaluable function g, and use bisection or Newton-Raphson

All the methods are iterative, i.e. the accuracy of the answer improves with each iteration

