
CS101 Autumn 2019 @ CSE IIT Bombay

CS 101:
Computer Programming and

Utilization

Puru
with

CS101 TAs and Staff

Course webpage: https://www.cse.iitb.ac.in/~cs101/

Lecture 23: Dynamic memory management
and the C++ Standard Template Library

http://www.cse.iitb.ac.in/~cs101/

CS101 Autumn 2019 @ CSE IIT Bombay

Classes

• A class is essentially the same as a struct, except:
– Any members/member functions in a struct are public by

default
– Any members/member functions in a class are private by

default

2

CS101 Autumn 2019 @ CSE IIT Bombay

Classes

• Example: A Queue class

class Queue{
int elements[N], nWaiting, front;

public:
Queue(){…}
bool remove(int &v){…}
bool insert(int v){…}

};

• The members - elements, nWaiting and front will be private.

3

CS101 Autumn 2019 @ CSE IIT Bombay

Function definition and declaration (with class)

class V3{
double x,y,z;
V3(double v){
x = y = z = v;

}
double X(){
return x;

}
};

class V3{
double x,y,z;
V3(double v);
double X();

};

//implementations
V3::V3(double v){
x = y = z = v;

}
double V3::X(){
return x;

}

4

CS101 Autumn 2019 @ CSE IIT Bombay

Example (with struct)

struct V3{
double x,y,z;
V3(double v){
x = y = z = v;

}
double X(){
return x;

}
};

struct V3{
double x,y,z;
V3(double v);
double X();

};

//implementations
V3::V3(double v){
x = y = z = v;

}
double V3::X(){
return x;

}

5

CS101 Autumn 2019 @ CSE IIT Bombay

The C++ Standard (Template) Library

Chapter 22

6

CS101 Autumn 2019 @ CSE IIT Bombay

The C++ Standard Library

• Comes with every C++ distribution
• Contains many functions and classes that you are likely to need in

day to day programming
• The classes have been optimized and debugged thoroughly
• If you use them, you may be able to write programs with very little

work
• Highly recommended that you use functions and classes form the

standard library whenever possible

• Files, Strings, Maps, Vectors, Sets, Lists,
Queues …

7

CS101 Autumn 2019 @ CSE IIT Bombay

Input Output Classes (stdin/stdout/files)

• cin, cout : objects of class istream, ostream resp. predefined in C++

• <<, >> : operators defined for the objects of these classes

• ifstream: another class like istream

• You create an object of class ifstream and associate it with a file on

your computer

• Now you can read from that file by invoking the >> operator!

• ofstream: a class like ostream, to be used for writing to files

• Must include header file <fstream> to uses ifstream and ofstream

8

CS101 Autumn 2019 @ CSE IIT Bombay

Example of File i/o
#include <fstream>
#include <simplecpp>
int main(){
ifstream infile(“f1.txt”);
// constructor call.
// object infile is created and associated
// with f1.txt, which must be present in the current directory

ofstream outfile(“f2.txt”);
// constructor call. Object outfile is created and associated
// with f2.txt, which will get created in the current directory

repeat(10){
int v;
infile >> v;
outfile << v;

}
// f1.txt must begin with 10 numbers. These will be read and
// written to file f2.txt

}

9

CS101 Autumn 2019 @ CSE IIT Bombay

ifstream /ofstream member functions
• open, close, is_open

• >> , <<, !

• get, getline, peek, read

• put, write

10

CS101 Autumn 2019 @ CSE IIT Bombay

“String theory”

• Iterative computations are demonstrated well on arrays

• strings … the system manages the array space for us

• string message; // a character string

• Can assign and append to strings
• Can read a position: cout << message[px]
• Can write a position: message[px] = ‘q’

11

CS101 Autumn 2019 @ CSE IIT Bombay

Strings without string

• character arrays!
char str[5] = {‘h’, ‘e’, ‘l’, ‘l’, ‘o’} ;

• why string then?

• the dreaded NULL character
• null character => character with ASCII value 0
• require null-terminated character array to represent end

of string
• no end of string can lead to chaos!

12

CS101 Autumn 2019 @ CSE IIT Bombay

Challenge with char arrays!

• Have to ensure null-termination at all points

• Character array sizing has to be managed (via copies
etc.) explicitly

• Not objects!

13

char str[6] = {‘e’, ‘a’, ‘r’, ‘t’, ‘h’} ;

cout << str; // early takeoff of space shuttle

str[5] = ‘\0’;
cout << str; // back to earth!

CS101 Autumn 2019 @ CSE IIT Bombay

the string class

• can use indexing as in arrays
• other member functions

– size, clear, empty,
– + , = , +=, >>, <<
– push_back, pop_back, append
– insert, erase, find, substr

14

string str = “earth”;

cout << str; // stay on earth!

CS101 Autumn 2019 @ CSE IIT Bombay

Printing a string in reverse

string message;
getline(cin, message);
int mx = message.size()-1;
while (mx >= 0) {
cout << message[mx];
--mx;

}

• mx updated in a predictable way
• Ideal candidate to write as for loop

Character at
position mx in
string message

15

CS101 Autumn 2019 @ CSE IIT Bombay

Finding needles in a haystack

• Given two strings, needles and haystack
• needles has no repeated characters
• haystack may repeat characters
• How many characters in needles appear in haystack at

least once?
• needles = “bat”, haystack = “tabla” à 3
• needles = “tab”, haystack = “bottle” à 2

16

CS101 Autumn 2019 @ CSE IIT Bombay

One needle in a haystack

• Subproblem: given one character ch and a string
find if ch appears in string at least once

char ch;
cin >> ch;
string haystack;
cin >> haystack;

int ans = 0; // will change to 1 if found
for (int hx = 0; hx < haystack.size(); ++hx) {
if (ch == haystack[hx]) {
++ans;
break; // quit on first match

}
}

17

CS101 Autumn 2019 @ CSE IIT Bombay

Many needles: nested loop
main() {
string needles, haystack;
getline(cin, needles); getline(cin, haystack);

int ans = 0;
for (int nx=0; nx < needles.size(); ++nx) {
char ch = needles[nx];
for (int hx = 0; hx < haystack.size(); ++hx) {
if (ch == haystack[hx]) {
++ans;
break; // quit on first match

}
} // ends haystack loop

} // ends needles loop
}

Generalize to work in
case needles can also

have repeated
characters

18

CS101 Autumn 2019 @ CSE IIT Bombay

Duplicate needles

• needles = “bat”, haystack = “tabla” à 3
• needles = “tab”, haystack = “bottle” à 2
• needles = “bata”, haystack = “tabla” à 3

• Two approaches
– Dedup needles before executing earlier code (reducing

to known problem)
– Dedup needles “on the fly” (inside the nx loop)

19

CS101 Autumn 2019 @ CSE IIT Bombay

Strings and member functions (example)
#include <string>
string v = “abcdab”;
string w(v);

v[2] = v[3]; // indexing allowed. v becomes “abddab”

cout << v.substr(2) << v.substr(1,3) << endl;
// substring starting at v[2] (“ddab”)
// substring starting at v[1] of length 3 (“bdd”)

int i = v.find(“ab”); // find occurrence of “ab” in v
// and return index

int j = v.find(“ab”,1); // find from index 1

cout << i << “, “ << j << endl; // will print out 0, 4.

20

CS101 Autumn 2019 @ CSE IIT Bombay

Dynamic memory
management

CS101 Autumn 2019 @ CSE IIT Bombay

The Heap memory
• In C++ there is a separate, reserved region of memory

called the Heap memory, or just the Heap.
• It is possible to explicitly request that memory for a

certain variable be allocated in the heap.

• When there is no more use for the variable thus
allocated, the program must explicitly return the
memory to the heap.
After the memory is returned, it can be used to satisfy
other memory allocation requests in the future.

• How?

22

CS101 Autumn 2019 @ CSE IIT Bombay

A variable on the heap to store a Book object

class Book{
char title[100];
double price;

};
…

Book *bptr;
bptr = new Book();
bptr->price = 399;

…
delete bptr;

• new asks for heap memory
• Must be followed by type

name T

• Memory for storing one
variable of type T is allocated
on the heap.

• new T returns address of
allocated memory.

• Now use the memory!

• After the memory is no longer
needed, it must be returned
by executing delete.

• new and delete are reserved
words, also operators

23

CS101 Autumn 2019 @ CSE IIT Bombay

With facility comes RESPONSIBILITY!

• Allocation and deallocation is simple and convenient

• However, experience shows that managing heap memory
is tricky and prone to errors!
– forgetting to deallocate (delete) memory.
– Referring to memory that has been deallocated.

(“Dangling reference”)
– Destroying the only pointer to memory allocated on the heap

before it is deallocated (“Memory Leak”)

24

CS101 Autumn 2019 @ CSE IIT Bombay

Error 1: Dangling reference
int* iptr;
iptr = new int;
*iptr = …;
delete iptr;
*iptr = ...; // dangling reference!

• In the last statement, iptr points to memory that has been
returned, and so should not be used.

• ... it might in general be allocated for some other request.
• Here the error is obvious, but if there are many intervening

statements it may not be.

25

CS101 Autumn 2019 @ CSE IIT Bombay

Error 2: Memory Leak 1
int *iptr;
iptr = new int; // statement 1
iptr = new int; // statement 2

• Memory is allocated in statement 1, and its address, say A, is
stored in iptr.
However, this address is overwritten in statement 2.

• Memory allocated at address A cannot be used by the program
because we have destroyed the address.

• However, we did not return (delete) that memory before
destroying the address. Heap allocation functions think that it has
been given to us.

• The memory at address A has become useless! “Leaked”

26

CS101 Autumn 2019 @ CSE IIT Bombay

Error 3: Memory Leak 2
{int *iptr;
iptr = new int; // statement 1
}

Memory is allocated in statement 1, and its address, say A, is stored in
iptr.
When control exits the block, then iptr is destroyed.

Memory allocated in statement 1 cannot be used by the program because
we do not know the address any longer.

However, we did not return (delete) that memory before destroying the
address. Heap allocation functions think that it has been given to us.

Memory at address A has become unusable!

27

CS101 Autumn 2019 @ CSE IIT Bombay

Simple strategy for preventing memory leaks

• Suppose a certain pointer variable, ptr, is the only
variable that contains the address of a variable allocated
on the heap.

• We must not store anything into ptr and destroy its
contents.

• When ptr is about to go out of scope, (control exits the
block in which ptr is defined) we must execute
delete ptr;

28

CS101 Autumn 2019 @ CSE IIT Bombay

Strategy for preventing dangling references

• Why we get a dangling reference:
• There are two pointers, say aptr and bptr which point

to the same variable on the heap.
• We execute delete aptr;
• Later we dereference bptr, not realizing the memory it

points to has been deallocated.
• Simple way to avoid this:
• Ensure that at all times, each variable on the heap will be

pointed to only by one pointer!
• More complex strategies are possible. See the book.

29

CS101 Autumn 2019 @ CSE IIT Bombay

Avoiding dangling references and memory leaks

• Ensure each variable allocated on the heap is pointed
to by exactly one pointer at any time.

• If aptr points to a heap variable, then before
executing aptr = … execute delete aptr;

• If aptr points to a heap variable, and if control is
about to exit the block in which aptr is defined, then
execute delete aptr;

• We can automate this!

30

CS101 Autumn 2019 @ CSE IIT Bombay

A class for representing character strings

• We would like to build a mystring class in which
we can store character strings of arbitrary length,
without worrying about allocating memory,
memory leaks, dangling references.

• We should be able to create mystrings, pass them
to functions, concatenate them, search them, and
so on.

31

CS101 Autumn 2019 @ CSE IIT Bombay

A program we should be able to write
int main(){
mystring a, b, c;
a = “pqr”;
b = a;
{
mystring c = a + b;
// concatenation
c.print();

}
cout << c[2] << endl;
mystring d[2];
d[0] = “xyz”;
d[1] = d[0] + c;
d[1].print();

}

• Our class should enable us to
write the program shown.

• Creation of string variables
• Assignment
• Concatenation
• Printing
• Declaring arrays

• All this requires memory
management, but that should
happen behind the scenes,
without memory leaks, dangling
pointers.

32

CS101 Autumn 2019 @ CSE IIT Bombay

Basic ideas in designing mystring
• Store the string itself on the heap, while maintain a pointer ptr

to it inside the class.
• The string will be terminated using the null character ‘\0’.
• When no string is stored,n.set ptr to NULL.

• NULL (=0) : standard convention, means pointer is invalid.
• NULL pointer different from NULL character.
• To avoid dangling references and memory leaks, ensure that

– Each ptr will point to a distinct char array on the heap.
– Before storing anything into ptr, delete the variable it points to.
– When any ptr is about to go out of scope, delete it.

• Other designs also possible – later.

33

CS101 Autumn 2019 @ CSE IIT Bombay

mystring class!
class mystring{

char* ptr;
mystring(){ // constructor

ptr = NULL; // initially empty string
}
void print(){ // print function

if(ptr != NULL)
cout << ptr;

else
cout <<“NULL”;

}
// other member functions..

};

34

CS101 Autumn 2019 @ CSE IIT Bombay

Assigning a character string constant
• Allow a character string constant to be stored in a myString

mystring a;
a = “pqr”;

• Thus, we must define member function operator=

• Character string constant is represented by a const char*
which points to the first character in the string

• So we will define a member function operator= taking a
const char* as an argument

35

CS101 Autumn 2019 @ CSE IIT Bombay

What should happen for a = “pqr”;
• a.ptr must be set to point to a string on the heap

holding “pqr”

• Why not set a.ptr to point to “pqr” directly?
– Member ptr must point to the heap memory. The

character string constant “pqr” may not be on the heap.
• a.ptr may already be pointing to some variable on

the heap.
– We are guaranteed that no other pointer points to that

variable, so we must delete a.ptr so that the memory
occupied by the variable is returned to the heap.

36

CS101 Autumn 2019 @ CSE IIT Bombay

The code
mystring& operator=(const char* rhs){
// release the memory that ptr already points to.
delete ptr;

// make a copy of rhs on the heap
// allocate len(rhs) + 1 byte to store ‘\0’
ptr = new char[len(rhs)+1];

// actually copy. Function scopy defined in book
scopy(ptr, rhs);

// We return a reference to the class to
// allow chaining of assignments.
return *this;

}

void scopy(char* ptr, char* rhs){
for(int i=0; i<len(rhs);i++) {
ptr[i] = rhs[i];

}
}

int len(char* ptr){
int l = 0;
while(ptr[l]!='\0') l++;
return l++;

}

37

CS101 Autumn 2019 @ CSE IIT Bombay

Assigning a String to another String

• We want to allow code such as
mystring a, b;
a = “pqr”;
b = a;

• The statement b = a; will cause a call
b.operator=(a) to be made.

• need a member function operator= which
takes a mystring as argument

38

CS101 Autumn 2019 @ CSE IIT Bombay

The code

mystring& operator=(const mystring &rhs){
// We must allow self assignment.
// If a self assignment, do nothing.
if(this == &rhs) return *this;

// Call the previous "=" operator.
*this = rhs.ptr;

return *this;
}

39

CS101 Autumn 2019 @ CSE IIT Bombay

The mystring destructor

• The destructor gets called when a myString
object goes out of scope, i.e., control exits the
block in which it is defined.

• Clearly, we must delete ptr to prevent memory
leaks.
~mystring(){
delete ptr;

}
• Note that this will work even if ptr is NULL; in

such cases delete does nothing.

40

CS101 Autumn 2019 @ CSE IIT Bombay

The copy constructor
• Copy constructor is like an assignment, except that

– we know that the destination object is also just being created, and
hence its ptr cannot be pointing to any heap variable.

– we don’t need to return anything.

• Hence this will be a simplified version of the assignment operator:

mystring(const mystring &rhs){
ptr = new char[length(rhs.ptr)+1];
scopy(ptr,rhs.ptr);

}

41

CS101 Autumn 2019 @ CSE IIT Bombay

The [] operator

• To access the individual characters of the
character string, we define operator[].
char& operator[](int i){

return ptr[i];
}

• We are returning a reference, so that we can
change characters also, i.e. write something like
String a; a = “pqr”;
a[0] = a[1];

• This should cause a to become “qqr”.

42

CS101 Autumn 2019 @ CSE IIT Bombay

Concatenation: + operator
• We use a+b to mean the concatenation of a, b.

String operator+(const String &rhs) {
String res; // result
// Allocate space for the result.
res.ptr = new char[length(ptr)+length(rhs.ptr)+1];

// Copy the string in the receiver into the result.
scopy(res.ptr, ptr);
// Copy the string in rhs but start at length(ptr)
// New version of scopy defined in book.
scopy(res.ptr, rhs.ptr, length(ptr));

return res;
}

43

CS101 Autumn 2019 @ CSE IIT Bombay

Remarks

• We have given the definitions of all the member
functions needed to be able to perform assignment,
passing and returning from functions, concatenation etc.
of mystring objects.

• The code given should be inserted into the definition of
mystring.

44

CS101 Autumn 2019 @ CSE IIT Bombay

Using the mystring class
• Here is a program to read 100 names and store them.

int main(){
String names[100];
char buffer[80]
for(int i=0; i<100; i++){

cin.getline(buffer,80);
names[i] = buffer;

}
// now use the array names[] however you want.

}

• If we use our class mystring, we do not need to mention
memory allocation, it happens automatically in the member
functions.

45

CS101 Autumn 2019 @ CSE IIT Bombay

Concluding remarks
• The class myString that we have defined performs

memory allocation and deallocation behind the scenes,
automatically.

• From the point of the user, myString variables are similar
to or as simple as int variables, except that myString
variables can contain character strings of arbitrary length
rather than integers.

• C++ Standard Library contains a class string (all
lowercase) which is a richer version of our myString
class.

46

CS101 Autumn 2019 @ CSE IIT Bombay

Templates

47

CS101 Autumn 2019 @ CSE IIT Bombay

• Function templates (Sec 12.5 in book)

• Consider these three functions: same body, different types
int Abs(int x)
{

if (x < 0)
return -x;

else return x;
}

float Abs(float x)
{

if (x < 0)
return -x;

else return x;
}

double Abs(double x)
{

if (x < 0)
return -x;

else return x;
}

A common template to unite
them all . . .

template<typename T>
T Abs(T x) {

if (x < 0)
return -x;

else return x;
}

Template functions

48

CS101 Autumn 2019 @ CSE IIT Bombay

• Like function templates, create class with templates.

template <class T>
class Queue {

int front, nWaiting;
T elements[100];

public:
bool insert(T value)
{...}
bool remove(T &val)
{...}

};

main () {
Queue<V3> q;
Queue<int> r;

r.insert(10);

v V3(1,1,1);
q.insert(v);

}

Template Class

49

CS101 Autumn 2019 @ CSE IIT Bombay

• Friendlier, more versatile version of arrays
• Must include header file <vector> to use it

• vectors of any type by supplying the type as an argument to the
template

• Indexing possible like arrays

• Possible to extend length, or even insert in the middle

Vectors

50

CS101 Autumn 2019 @ CSE IIT Bombay

#include <vector> // needed

vector<int> v1; //empty vector. Elements will be int
vector<float> v2; //empty vector. Elements will be float
vector<short> v3(10); // vector of length 10.

// Elements are of type short

vector<char> v4(5,’a’); // 5 elements, all ‘a’
cout << v3.size() << endl; // prints vector length, 10

// v3.length() is same

v3[6] = 34; // standard indexing

vector examples

51

CS101 Autumn 2019 @ CSE IIT Bombay

#include <vector> // needed
...

v3.push_back(22); // append 22 to v3.
// Length increases

vector<char> w;
w = v5; // element by element copy

v1.resize(9); // change length to 9
v2.resize(5, 3.3); // length becomes 5, all

// values become 3.3
vector<string> s; // vector of string

vector<vector<int> > vv; // allowed!

vector examples (continued)

52

CS101 Autumn 2019 @ CSE IIT Bombay

• The member function size returns a value of type size_t
• size_t is an unsigned integer type; it is meant specially for storing

array indices
• When going through array elements, use size_t for the index

variable
vector<double> v(10); // initialize v
for(size_t i=0; i<v.size(); i++)

cout << v[i] << endl;
• If i were declared int, then the compiler would warn about the

comparison between i and v.size()
– comparison between signed and unsigned int, which is tricky

as discussed in Section 6.8.
– By declaring i to be size_t, the warning is suppressed.

size_t

53

CS101 Autumn 2019 @ CSE IIT Bombay

vector<vector <int> > vv;
// each element of vv is itself a vector of int
// we must supply two indices to get to int
// Hence it is a 2d vector!
// Currently vv is empty

vector<vector <int> > vv1(5, vector<int>(10,23));
// vv1 has 5 elements
// each of which is a vector<int>
// of length 10,
// having initial value 23

Multi-dimensional vectors

54

CS101 Autumn 2019 @ CSE IIT Bombay

• Note that the syntax is not new/special

• It is merely repeated use of specifying the length and initial value:
vector<type> name(length, value)

• Two dimensional arrays can be accessed by supplying two indices,

i.e., vv1[4][6] and so on
• Write vv1.size() and vv1[0].size() to get number of rows and

columns

Multi-dimensional vectors usage

55

CS101 Autumn 2019 @ CSE IIT Bombay

vector<vector<double>> m(5, vector<double>(5,0));
// m = 5x5 matrix of 0s

// elements of m can be accessed
// by specifying two indices
for(int i=0; i<5; i++)
m[i][i] = 1;

// place 1’s along the diagonal

Creating a 5x5 identity matrix

56

CS101 Autumn 2019 @ CSE IIT Bombay

• The book discusses a matrix class which internally uses vector
of vectors

• This class is better than two dimensional arrays because it can
be passed to functions by value or by reference, with the
matrix size being arbitrary

Ch. 22 (22.2.7)

57

CS101 Autumn 2019 @ CSE IIT Bombay

• C++ provides a built-in facility to sort vectors and also arrays
• You must include <algorithm> to use this

vector<int> v(10);
// somehow initialize v

sort(v.begin(), v.end());

• That’s it! v is sorted in non decreasing order

• begin() and end() return “iterators” over v.
Think of them as abstract pointers to the beginning and the end.

Sorting a vector

58

CS101 Autumn 2019 @ CSE IIT Bombay

• The algorithms in header file <algorithm> can also sort
arrays as follows

double a[100];
// somehow initialize a

sort(a, a+100); // sorted!
// second argument is name+length

• More variations in the book

Sorting an array

59

CS101 Autumn 2019 @ CSE IIT Bombay

• A vector or an array give us an element when we supply an
index
– Index must be an integer

• May want to use indices which are not integers, but strings
– Given the name of a country, we may want to find out its

population, or its capital
– This can be done using a map
– (a.k.a) key-value store
– keys and values can be of data types other than integers

The Map Template Class

60

CS101 Autumn 2019 @ CSE IIT Bombay

• General form:
map<indextype, valuetype> mapname;

• Examples:
map<string, double> population;
Indices will have type string (country names), and elements
will have type double (population)

map<string, vector<string>> dictionary;

??

The Map

61

CS101 Autumn 2019 @ CSE IIT Bombay

map<string, double> population;

population[“India”] = 1.21;
// in billions. Map entry created
population[“China”] = 1.35;
population[“USA”] = 0.31;

cout << population[“China”] << endl;
// will print 1.35

population[“India”] = 1.22;
//update allowed

Map usage

62

CS101 Autumn 2019 @ CSE IIT Bombay

string country;
cout << “Give country name: “;
cin >> country;

if(population.count(country)>0) {
// true if element with index = country
// was stored earlier
// count is a known member function

cout << population[country] << endl;
}
else cout << “Not known.\n”;

Checking index validity

63

CS101 Autumn 2019 @ CSE IIT Bombay

• A lot goes on behind the scenes to implement a map

• Basic idea is discussed in Chapter 24 of the textbook

• How to print all entries of a map?

Remarks

64

CS101 Autumn 2019 @ CSE IIT Bombay

• A map can be thought of as holding a sequence of pairs, of the

form (index, value)

• For example, the population map can be considered to be the

sequence of pairs

[(“China”,1.35), (“India”,1.21), (“USA”, 0.31)]

• You may wish to access all elements in the map, one after another,

and do something with them

• For this, you can obtain an iterator, which points to (in an abstract

sense) elements of the sequence

Iterators

65

CS101 Autumn 2019 @ CSE IIT Bombay

An iterator points to (in an abstract sense) elements of the sequence

• An iterator can be initialized to point to the first element of the
sequence

• In general, given an iterator which points to some element,
you can ask if there is any element following the element, and
if so make the iterator point to the next element

• An iterator for a map<index,value> is an object with type
map<index,value>::iterator

Iterators (continued)

66

CS101 Autumn 2019 @ CSE IIT Bombay

• An iterator points to elements in the map; each element is a
struct with members first and second

• We can get to the members by using dereferencing

• Note that this simply means that the dereferencing operators
are defined for iterators

• If many elements are stored in an iterator, they are arranged
in (lexicographically) increasing order of the key

Using iterators

67

CS101 Autumn 2019 @ CSE IIT Bombay

map<string,double> population;
population[“India”] = 1.21;

map<string,double>::iterator mi;
mi = population.begin();
// population.begin() : constant iterator
// points to the first element of population
// mi points to (India,1.21)

cout << mi->first << endl; // or (*mi).first << endl;
// will print out India

cout << mi->second << endl;
// will print out 1.21

Example

68

CS101 Autumn 2019 @ CSE IIT Bombay

map<string,double> population;
population[“India”] = 1.21;
population[“China”] = 1.35;
population[“USA”] = 0.31;

for(map<string,double>::iterator
mi = population.begin();
mi != population.end(); mi++)

// population.end() : constant iterator
// marking the end of population
// ++ sets mi to point to the
// next element of the map
// loop body

69

Example

CS101 Autumn 2019 @ CSE IIT Bombay

map<string,double> population;
population[“India”] = 1.21;
population[“USA”] = 0.31;
population[“China”] = 1.35;

for(map<string,double>::iterator
mi = population.begin();
mi != population.end();
mi++)

{
cout << (*mi).first << “: “ << (*mi).second << endl;
// or cout << mi->first << “: “ << mi->second << endl;

}
// will print out countries and population in
alphabetical order

70

Example

CS101 Autumn 2019 @ CSE IIT Bombay

• Iterators can work with vectors and arrays too
• Iterators can be used to find and delete elements from maps

and vectors.

map<string,double>::iterator
mi = population.find("India");

population.erase(mi);

71

Remarks

CS101 Autumn 2019 @ CSE IIT Bombay

• Any class used as indextype on a map must implement
the "<" operator.

• Example, the following code will not work because "<" is
not defined on V3.
• class V3 {public: double x,y,z};
• map<V3, string> vec2string;

• A correct implementation of V3 may be something like:
class V3 {

public:
double x,y,z;
bool operator<(const V3& a) const {

if (x < a.x) return true;
if (x == a.x && y < a.y) return true;
if (x==a.x && y == a.y && z < a.z) return true;
return false;

}
};

Maps with user-defined class as index

72

CS101 Autumn 2019 @ CSE IIT Bombay

Sets

• Sets are containers that store unique elements following a specific
order

• The value of the elements in a set cannot be modified once in the
container (the elements are always const), but they can be
inserted or removed from the container

• Internally, the elements in a set are always sorted following a
specific ordering criterion indicated by its internal comparison
object

73

CS101 Autumn 2019 @ CSE IIT Bombay

Populating and Traversing a Set
#include <set> // set class library
...
set<int> set1; // create a set object,

// specifying its content as int
// the set is empty

int ar[]={3,2,4,2};
for (int i = 0; i < 4; i++) {
set1.insert(ar[i]); // add elements to the set.

}
for (set<int>::iterator iter = set1.begin();

iter != set1.end(); iter++) {
cout << *iter << " ";

} // prints 2 3 4

74

CS101 Autumn 2019 @ CSE IIT Bombay

Application of Set

map<set<string>, vector<int>> study_group;
// key of the map is the set of courses.
// value is vector of student roll-numbers of students
// who have taken this course.

cin >> N;
for(int i = 0; i < N; i++) {

int roll, int n;
cin >> roll >> n;
set<string> subjects;

Given N students where each student has a list of courses that they have taken.
Create group of all students that have taken exactly the same set of courses.

75

CS101 Autumn 2019 @ CSE IIT Bombay

for (int j = 0; j < n; j++) {
string s; cin >> s;

subjects.insert(s);
}
study_group[subjects].push_back(rollno);

}

76

Application of Set (continued)

CS101 Autumn 2019 @ CSE IIT Bombay

List

• Implements a classic list data structure
• Supports a dynamic bidirectional linear list

• Unlike a C++ array, the objects the STL list contains cannot be
accessed directly (i.e., by subscript)

• Is defined as a template class, meaning that it can be customized to
hold objects of any type

• Responds like an unsorted list (i.e., the order of the list is not
maintained).
However, there are functions available for sorting the list

77

CS101 Autumn 2019 @ CSE IIT Bombay

Populating and Traversing a List
#include <list> // list class library
...
list <int> list1; // create a list object,

// specifying its content as int
// the list is empty

for (i=0; i<5; i++)
list1.push_back (i); // add at the end of the list

...
while (list1.size() > 0)
{ cout << list1.front(); // print the front item

list1.pop_front(); // discard the front item
}
// other functions
// insert, remove, pop_back, push_front, remove, sort, …

78

CS101 Autumn 2019 @ CSE IIT Bombay

• Standard Library contains other useful classes, e.g. queue, list, set
etc.

• The Standard Library classes use heap memory, however this
happens behind the scenes and you don’t have to knowabout it

• The library classes are very useful. Get some practice with them

More details on the web.
Example:http://www.cplusplus.com/reference/stl/

Concluding Remarks

79

http://www.cplusplus.com/reference/stl/%0d

