
 Lab 5 (D3)
 Instructions

 ● There are five questions in this lab
 ● If your score in theory quiz 1 is

 ○ Below 3: all are compulsory. Start with Q1 and move ahead
 ○ Below 6: Q2 to Q5
 ○ Below 8: Q3 to Q5
 ○ 8 and above: Q4 and Q5

 Q1. Classify the Quadrilaterals

 You are given the coordinates of four points in a 2D plane: (x1,y1), (x2,y2), (x3,y3) and (x4,y4).
 Write a C++ function that classifies the quadrilateral formed by these four points into one of the
 following types :

 1. Square
 2. Rectangle

 If the quadrilateral does not fall into any of these categories, then you should print "Other" . If
 the points are collinear (i.e., they do not form a quadrilateral), then you should print "Not a
 Quadrilateral".

 Input Format
 ● The function will take 8 space-separated integers as input, representing the

 coordinates of the four points in a 2D plane. Each input point (xi,yi) represents the x
 and y-coordinates of one of the vertices of the quadrilateral. Order of the input format
 is as follows :

 x1,y1,x2,y2,x3,y3,x4,y4

 Output Format
 The function will output a string indicating the type of quadrilateral formed by the four points.
 The possible outputs are:

 ● "Square" if the quadrilateral is a square.
 ● "Rectangle" if the quadrilateral is a rectangle.
 ● "Other" if the quadrilateral does not match any of the above types.
 ● "Not a Quadrilateral" if the points are collinear and do not form a valid

 quadrilateral.

 Note :
 ● Do not write any C++ statements for printing general messages. For example, the

 following should NOT be present in your program:
 ○ cout << "Enter a number:",
 ○ cout << "The computed answer is", etc.

 ● cout should be used to print only the computed final output. In addition, do not print
 unnecessary spaces unless specified in the program.

 ● If any hard coding is found, or if any test case passes by merely writing a cout
 statement and without any logic, then the marks for that test case will NOT be
 awarded.

 Visible Test Cases
 Input Output

 0 0 1 0 1 1 0 1 Square

 1 2 2 4 3 6 4 8 Not a Quadrilateral

 0 0 4 1 6 5 2 4 Other

 Q2.Square Number Pattern

 You are required to write a C++ program that generates a hollow square number pattern. The
 pattern should be a square grid of size n x n where the border of the square is filled with
 sequential numbers starting from 1 , while the inside of the square should be left blank.

 Input Format
 ● An integer n (3 ≤ n ≤ 100), where n represents the number of rows in the pattern.

 Output Format
 ● A hollow square pattern of size n x n . The border of the square contains numbers

 from 1 to n , and the interior cells are empty spaces.

 Note
 ● Do not write any C++ statements for printing general messages. For example, the

 following should NOT be present in your program:
 ○ cout << "Enter a number:",
 ○ cout << "The computed answer is", etc.

 ● cout should be used to print only the computed final output. In addition, do not print
 unnecessary spaces unless specified in the program.

 ● If any hard coding is found, or if any test case passes by merely writing a cout
 statement and without any logic, then the marks for that test case will NOT be
 awarded.

 Visible Test Cases
 Input Output

 5 12345
 1 5
 1 5
 1 5
 12345

 3 123
 1 3
 123

 10 12345678910
 1 10
 1 10
 1 10
 1 10
 1 10
 1 10
 1 10
 1 10
 12345678910

 Q3. Steps to One

 You are given a natural number n. Apply the following rules to n until it becomes 1:
 ● If n is a multiple of 4: Divide it by 4. (n = n / 4)
 ● If n is a multiple of 3 but not 4: Subtract 6 from it. (n = n - 6)
 ● Otherwise: Add 5 to it. (n = n + 5)

 If n becomes less than or equal to 0 stop and print -1 as output. Determine the number of steps
 required to reduce n to 1.

 For example ,
 For n = 15:

 1. 15 is a multiple of 3 but not 4: n = 15 - 6 = 9
 2. 9 is a multiple of 3 but not 4: n = 9 - 6 = 3
 3. 3 is a multiple of 3 but not 4: n = 3 - 6 = -3
 4. -3 is less than 1: (Stop)

 The output for n = 15 will be -1.

 Input Format
 ● A single natural number n (1 ≤ n ≤ 1000).

 Output Format
 ● The number of steps required to reduce n to 1.

 Note
 ● Do not write any C++ statements for printing general messages. For example, the

 following should NOT be present in your program:
 ○ cout << "Enter a number:",
 ○ cout << "The computed answer is", etc.

 ● cout should be used to print only the computed final output. In addition, do not print
 unnecessary spaces unless specified in the program.

 ● If any hard coding is found, or if any test case passes by merely writing a cout
 statement and without any logic, then the marks for that test case will NOT be
 awarded.

 Visible Test Cases
 Input Output

 15 -1

 16 2

 11 3

 Q4. Trigonometric expression evaluation

 You are asked to create a program that uses a struct to represent a trigonometric expression of
 the form : Asin (x) + Bcos (x)

 The program should calculate the equivalent expression in the form: Rsin(x + theta)

 using the following formula:

 Asin (x) + Bcos (x) = Rsin(x + theta)

 where:

 ● R = sqrt (A^2 + B^2) is the amplitude.
 ● Theta = tan -1 (B/A) is the phase shift.

 Define a struct called TrigExpression :
 ● The struct should contain two data members, A and B, of type double, which represent

 the coefficients of sin (x) and cos (x), respectively.

 Write a void function convertForm :
 ● This function should take a TrigExpression object as input, and print the expression in

 the form Rsin(x + theta) .
 ● This function should print both the original expression and the converted expression.
 ● You can import the <cmath> library and use the following inbuilt functions to calculate

 square root and tan -1 (B/A) respectively:
 ○ double sqrt(double x) : The sqrt function takes a single argument x and returns

 the non-negative square root of x. For example, sqrt(25) returns 5 because
 5^2=25.

 ○ double atan2(double y, double x) : The atan2 function computes the arctangent of
 the quotient of its arguments. For example, atan2(0,-1) returns 3.14159
 (approximately π).

 ● Note : print the value of theta only till 3 decimal places.

 Main function :

 ● Create an instance of TrigExpression and initialize it with user-provided values for A and
 B.

 ● Call the convertForm function - which prints both the original expression and the
 converted expression.

 Input Format
 The input consists of two double numbers:

 ● The first number represents the coefficient A of the sin (x) term.
 ● The second number represents the coefficient B of the cos (x) term.

 Output Format
 ● Print the original expression in the form : A*sin (x) + B*cos (x) .
 ● Print the converted expression in the form R*sin(x + theta) in the next line .

 Visible Test Cases
 Input Output

 3.0
 4.0

 3*sin(x) + 4*cos(x)
 5*sin(x + 0.927295)

 5.0
 0.0

 5*sin(x) + 0*cos(x)
 5*sin(x + 0)

 359.69
 1024.69

 359.69*sin(x) + 1024.69*cos(x)
 1085.99*sin(x + 1.23321)

 Q5. Time Difference

 Create a C++ program that uses struct to represent a Time in hours and minutes. Perform
 operation on the Time, and output the results.

 Define a struct Time :
 ● Two integer data members : Hours and Minutes.
 ● Write four functions :

 ○ addTime that takes two Time objects, adds and returns the result.
 ○ subTime that takes the two Time objects, subtracts and returns the result.
 ○ addMinutes that takes a single Time object and a positive integer

 ‘minute’ as input, and adds the ‘minute’ to the Time.

 ○ subtractMinutes that takes a single Time object and a positive integer
 ‘minute’ as input, and subtracts the ‘minute’ from the Time .

 ● Display the result of the Time operation in the main function.

 Main function :
 ● Take character input from the user. ‘A’ - addTime, ‘S’ - SubTime , ‘X’ - addMinutes, ‘Y’ -

 subtractMinutes.
 ● Create instances of Time based on the character input taken before , and initialize them

 with user inputted values.
 ● Output the result of the operation - in hours and minutes.

 Input Format:
 Character Input from the user, stating the operation that needs to be performed.
 Time objects, each defined by two integers (hours and minutes), representing their times.

 Output Format:
 The result of the Time operation is represented in hours and minutes.

 Note : While printing, minutes should not exceed 60

 Visible Test Cases
 Input Output

 A
 40 30
 20 45

 61 15

 S
 11 43
 3 30

 8 13

 Y
 14 16
 45

 13 31

