
 Lab 5 (D4)

 Instructions
 ● There are five questions in this lab
 ● If your score in theory quiz 1 is

 ○ Below 3: all are compulsory. Start with Q1 and move ahead
 ○ Below 6: Q2 to Q5
 ○ Below 8: Q3 to Q5
 ○ 8 and above: Q4 and Q5

 Q1. Classify triangles

 You are developing a system to classify different types of triangles based on their side lengths.
 Write a C++ program that reads three positive integers representing the side lengths of a
 triangle and determines the type of triangle they form. Also, you have to check if the given sides
 satisfy the triangle inequality theorem to determine if they form a triangle.

 1. If the triangle is an Equilateral Triangle print a character ‘E’.
 2. If the triangle is an Isosceles Triangle print a character ‘I’.
 3. If the triangle is an Scalene Triangle print a character ‘S’
 4. Print a character ‘N’ if the given sides do not satisfy the triangle inequality theorem.

 Input Format
 ● Three positive integers a, b, and c representing the lengths of the sides of a potential

 triangle.

 Output Format
 ● A character representing a type of triangle.

 Note
 ● Do not write any C++ statements for printing general messages. For example, the

 following should NOT be present in your program:
 ○ cout << "Enter a number:"
 ○ cout << "The computed answer is", etc.

 ● cout should be used to print only the computed final output. In addition, do not print
 unnecessary spaces unless specified in the program.

 ● If any hard coding is found, or if any test case passes by merely writing a cout statement
 and without any logic, then the marks for that test case will NOT be awarded.

 Visible Test Cases
 Input Output

 3 4 5 S

 2 2 5 N

 5 5 5 E

 Q2. Star Pattern

 You are required to write a program that generates a mirror star pattern based on the number of
 rows provided by the user. The pattern should align stars to the right, creating a mirror effect.
 The number of rows determines the height of the pattern and the maximum width of the pattern
 is equal to the number of rows.
 For example ,

 Input Format
 ● An integer n (1 ≤ n ≤ 100), where n represents the number of rows in the pattern.

 Output Format
 ● A mirror star pattern of n rows, where each row i (1 ≤ i ≤ n) contains exactly i stars,

 right-aligned to the maximum width of n characters.

 Note
 ● Do not write any C++ statements for printing general messages. For example, the

 following should NOT be present in your program:
 ○ cout << "Enter a number:",
 ○ cout << "The computed answer is", etc.

 ● cout should be used to print only the computed final output. In addition, do not print
 unnecessary spaces unless specified in the program.

 ● If any hard coding is found, or if any test case passes by merely writing a cout
 statement and without any logic, then the marks for that test case will NOT be
 awarded.

 Visible Test Cases
 Input Output

 5 *
 **

 3 *
 **

 7 *
 **

 Q3. Distinct Rectangle Formations

 Raj is working on a coding challenge where he needs to divide a string of length n into four
 segments. He wants to make exactly three splits in the string to create these four segments.
 Each segment must have a positive integer length, and the sum of these lengths will be n.

 Raj is excited about patterns but wants to avoid creating a situation where all four segments are
 identical, which would be too repetitive. Instead, he wonders how many ways he can split the
 string into four segments such that it’s possible to rearrange these segments to form a pattern
 that can be visually represented as a rectangle (e.g., placing segments side by side to form a
 rectangle), but impossible to rearrange them to form a square (where all segments are
 identical).

 Your task is to help Raj and count the number of such ways to split the string. Two ways to cut
 the string are considered distinct if there is some integer x such that the number of segments of
 length x in the first way differs from the number of segments of length x in the second way.

 For example,
 For n = 20, there are four distinct ways: [1, 1, 9, 9], [2, 2, 8, 8], [3, 3, 7, 7], and [4, 4, 6, 6]. Note
 that the [5, 5, 5, 5] is not valid because it forms a square instead of a rectangle.

 Input Format
 ● A single natural number n which represents length of the string. (1 ≤ n ≤ 10^9).

 Output Format
 ● The number of ways to split the string of length n into four parts of positive integer

 length so that it's possible to make a rectangle but impossible to form a s.

 Note
 ● Do not write any C++ statements for printing general messages. For example, the

 following should NOT be present in your program:
 ○ cout << "Enter a number:",
 ○ cout << "The computed answer is", etc.

 ● cout should be used to print only the computed final output. In addition, do not print
 unnecessary spaces unless specified in the program.

 ● If any hard coding is found, or if any test case passes by merely writing a cout
 statement and without any logic, then the marks for that test case will NOT be
 awarded.

 Visible Test Cases
 Input Output

 20 4

 6 1

 5 0

 1000 249

 7700 1924

 Q4. Complex Numbers

 Write a C++ program that defines a struct named Complex to represent a complex number. The
 Complex struct should have two float data members: real and imaginary, representing the real
 and imaginary parts of the complex number, respectively.

 ● Prompt the user to input two complex numbers in the main function
 ● Create two instances of the Complex struct and initialize them with the user's input.
 ● Take user input on whether they want to add, subtract, multiply or divide the numbers,

 the input characters being ‘A’, ‘S’, ‘M’, or ‘D’ respectively.
 ● Write four functions :

 ○ addComplex that takes the two Complex numbers as parameters, adds them,
 and returns the sum as a Complex number.

 ○ subComplex that takes the two Complex numbers as parameters, subtracts
 them, and returns the sum as a Complex number.

 ○ mulComplex that takes the two Complex numbers as parameters, multiplies
 them, and returns the sum as a Complex number.

 ○ divideComplex that takes the two Complex numbers as parameters, divides
 them, and returns the sum as a Complex number.

 ● Display the result of the operation of the two complex numbers in the main function.

 Input Format:

 The first line of input should contain two float values: real and imaginary parts of the first
 complex number separated by a space.
 The second line of input should contain two float values: real and imaginary parts of the second
 complex number separated by a space.
 The third line of input contains a character that represents an operation : ‘A’ , ‘S’ , ‘M’ or ‘D’.

 Output Format:
 The output should display the result of the operation of the two complex numbers in the format
 without any text or spaces: ‘real_part + imaginary_parti’.

 Note
 ● Do not write any C++ statements for printing general messages. For example, the

 following should NOT be present in your program:
 ○ cout << "Enter a number:",
 ○ cout << "The computed answer is", etc.

 ● cout should be used to print only the computed final output. In addition, do not print
 unnecessary spaces unless specified in the program.

 ● If any hard coding is found, or if any test case passes by merely writing a cout
 statement and without any logic, then the marks for that test case will NOT be
 awarded.

 Visible Test Cases
 Input Output

 2 4
 4 5
 A

 6 + 9i

 2 3
 4 5
 M

 -7 + 22i

 3 -1
 2 -2
 D

 1 + 0.5i

 Q5. Geometric Shape Analysis

 Write a C++ program to calculate and compare geometric properties of a cube and a sphere in
 three-dimensional space.
 To check if the cube and sphere overlap, you must do following things:

 I. Compute the Euclidean distance between the center of the sphere and the center of the
 cube.

 II. Determine if this distance is less than the sum of the sphere's radius and half the length
 of the cube’s diagonal.
 Formula for diagonal of cube is: √3 * side of cube
 If the distance between the centers of the Cube and the Sphere is less than the sum of
 the sphere's radius and half of the cube's diagonal, then the cube and sphere overlap
 else it does not.

 For this question you must define the following
 ● Structs:

 1. ‘Point’ which represent a point in 3D space
 2. ‘Cube’ which represent a cube

 This struct will have 2 members
 a. ‘center’ which will represent the center of cube and it will be of type ‘Point’
 b. ‘side’ which will represent the length of each side of cube and it will be of

 type ‘double’
 3. ‘Sphere’ which represent a sphere

 This struct will have 2 members
 a. ‘ center’ which will represent the center of sphere and it will be of type

 ‘Point’
 b. ‘radius’ which will represent the radius of the sphere and it will be of type

 double.
 ● Functions:

 1. void calculateVolume(Cube &cube, Sphere &sphere) { }
 This function will calculate the volume of both the sphere and cube and print it.

 2. void calculateSurfaceArea(Cube &cube, Sphere &sphere) { }
 This function will calculate the surface area of both the sphere and cube and print

 it.
 3. bool willOverlap(Cube &cube, Sphere &sphere { }

 This function will return a boolean value. It will return true if the cube and sphere
 overlap or return false if the cube and sphere don’t overlap.

 In main function
 1. Create one object of Cube and Sphere struct each.
 2. Pass these objects to the functions given above.
 3. Print the result returned from willOverlap function. Print 1 if the willOverlap function returns

 true else print 0.

 Note: While printing the volumes and surface areas of cube and sphere use setprecision(2)
 function from <iomanip> library.
 Example: If you want to print variable x, you have to write
 cout << std::fixed << std::setprecision<< x << endl;

 Input Format

 ● The first line contains center coordinates and length of the cube.
 ● The second line contains center coordinates and radius of sphere.

 Output Format
 ● The first line is the volume of the cube and volume of the sphere.
 ● The second line is surface area of cube and surface area of sphere
 ● The third line represents whether the cube and sphere overlap or not. Print 1 if they

 overlap else print 0.

 Note
 ● Do not write any C++ statements for printing general messages. For example, the

 following should NOT be present in your program:
 ○ cout << "Enter a number:",
 ○ cout << "The computed answer is", etc.

 ● cout should be used to print only the computed final output. In addition, do not print
 unnecessary spaces unless specified in the program.

 ● If any hard coding is found, or if any test case passes by merely writing a cout
 statement and without any logic, then the marks for that test case will NOT be
 awarded.

 Visible Test Cases
 Input Output

 1.0 1.0 1.0 4.0
 2.0 2.0 2.0 3.0

 64.00 113.10
 96.00 113.10
 1

 0.0 0.0 0.0 2.0
 10.0 10.0 10.0 5.0

 8.00 523.60
 24.00 314.16
 0

 5.2 5.9 6.2 14.2
 6.2 5.2 4.6 12.98

 2863.29 9160.36
 1209.84 2117.19
 1

