CS 101: Computer Programming and Utilization

Jul-Nov 2017

Umesh Bellur
(cs101@cse.iitb.ac.in)

Lecture 5: Program Design
A Program Design Example
How To Write Programs

So far, we wrote very simple programs
Simple programs can be written intuitively
Even slightly complex programs should be written with some care and planning
You must try to ensure that your program works correctly no matter what input is given to it
This is tricky even for slightly complex programs
As a professional programmer, you must remember that an incorrect program could cause a plane to crash, an X-ray machine to supply the wrong amount of radiation: your program may be controlling such devices
Program Development Strategy

- Write specification (i.e. - exact input, exact output)
- Construct testcases
- Figure out how you would solve the problem on a paper and write the steps
- Write the program
 - Check that the program is correct, by reasoning and by running testcases
 - Repeat steps if wrong
The Problem

The following series approaches e (natural log) as n increases:

$$e = 1/0! + 1/1! + 1/2! + \ldots + 1/n!$$

Write a program which takes n as input and prints the sum of the above series
The **Specification**

- Usually, the problem will be specified in natural language (English or others) where there may be some ambiguity, or possibilities of confusion. So it is desirable to write to write down what is given and what is needed very precisely.

- **Specification**: A statement of what is the input and the corresponding output. Clear description of when the output is to be considered correct.
The Specification For Our Problem

Input: an integer n, where \(n \geq 0 \)

Output: The sum \(\frac{1}{0!} + \ldots + \frac{1}{n!} \)

- This is simple enough, but note that we have made explicit that \(n \) cannot be a negative number.
- Also, it is worth reading this carefully yourself and asking, can something be misunderstood in this?
- You may realize that carelessly, you may think of \(n \) as also being the number of terms to be added up.
- The number of **terms** being added together is \(n+1 \).
- The number of **additions** is indeed \(n \), however
Constructing Test Cases

- Write down some specific input values, and the corresponding expected output values
- This will help ensure that you understand the problem and cross-check the specification you wrote
- 3 test cases may be sufficient for this simple problem

- For \(n=0 \), clearly the answer must be 1
- For \(n=1 \), answer = 1+1/1! = 2
- For \(n=2 \), answer = 1+1/1!+1/2! = 2.5
- We can put the test cases into a table:

<table>
<thead>
<tr>
<th>Input (n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>1</td>
<td>2</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Designing the Algorithm (1)

Solving the problem by pencil and paper

− Calculate the first term, 1/0!, which is just 1
− Calculate the second term, 1/1! which is just 1. Add to 1
− Calculate the third term, 1/2!, add to sum so far
− Calculate the fourth term 1/3! …

Now, you can calculate the fourth term by observing that it is just the third term multiplied by 1/3:

− \(\frac{1}{3!} = \frac{1}{2!} \times \frac{1}{3} \)

This idea will save work in your program too.

But you need to find the general pattern, which is:

− \(\frac{1}{t!} = \frac{1}{(t-1)!} \times \frac{1}{t} \)

So now you can think of a program
What Variables To Use

- When we solve on paper, we write many numbers; we do not need separate variables to store them.
- As you calculate on paper, identify the numbers that are changing. These must be stored in a variable. Usually these will be few.
- We need to keep track of the sum, so clearly we need a variable for it: let us call it result.
- We generate the t^{th} term from the $(t-1)^{th}$. So we need to remember the previous term. Store it as variable term.
- According to our general pattern, we also need to remember t, so we will have a variable i for that.
A Program Sketch

There are \((n+1)\) terms
We need to perform \(n\) additions. Clearly we should have a loop for that
So our program should have the following form

```cpp
main_program{
    int n; cin >> n;
    int i = ....;
    double term = ..., result = ...
    repeat(n){
        ...
    }
    cout << result << endl;
}
```
Filling in the Details (1)

• If \(n \) is given as 0, then the loop does not execute even once, and the result is printed
 – The value that is printed is the value we initialize \(\text{result} \) with
 – Since we want 1 to be printed, we must initialize \(\text{result} = 1 \)
Filling in the Details (2)

• We next decide what values \((i, \text{term})\) should have when we enter the loop for the \(t^{th}\) time, where \(t=1, 2, \ldots, n\).

• In the loop iterations the terms \(1/1!, 1/2!, 1/3!\ldots1/n!\) need to get added one by one into the variable result.

• We can do this in the following way. When we enter the loop the \(t^{th}\) time
 – \(i\) has the value \(t-1\)
 – \text{term} has the value \(1/(t-1)!\) i.e. the value of the previous term added
 – \text{result} has the sum till \(1/(t-1)!\)
Filling in the Details (3)

• So on entering for the first time, i.e. when t=1:
 – i should have the value t-1 = 0
 – term must have the value 1/(t-1)!=1
• Thus before the loop we must initialize
 – i=0; term=1;
• Inside the loop we have to add the next term to result. But i and term holds the previous values
 – So the first statement in the loop should be:
 – i = i+ 1;
• i now has the value t. So Next statement is:
 – term = term/i
• Now we have to add this into result. So we have:
 – result = result + term
• Now result has the sum upto 1/t!, so t^{th} iteration is complete, and coding is done
The Final Code

main_program{
 int n; cin >> n;
 int i=0;
 double term = 1, result = 1;
 repeat(n) {
 // On entry for t^{th} time, t=1..n
 // i=t-1, term=1/(t-1)!
 // result = 1/0!+..+1/(t-1)!

 i = i + 1; // now i = t
 term = term/i; // now term = 1/t!
 result = result + term; // now result = 1+..+1/t!
 }
 cout << result << endl;
}

It is useful to go over the code again to see that the values of the variables indeed satisfy what we say about them.

Specially check: will the values of the variables agree with what we say about them on the $t+1^{\text{th}}$ iteration?
Testing

• Next, compile and run the program for the test cases you generated.
• Check if the program output agrees with what was in the table.
• If the program does not agree, you are said to have a bug.
• Now you must remove the bug, or debug.
Debugging

• Simplest strategy: print intermediate results.

```cpp
main_program{
    int n; cin >> n;
    int i=0, term = 1, result = 1;
    repeat(n){// On t\text{th} entry, t=1..n
        // i=t, term=1/(t-1)!
        // result =1/0!+..+1/(t-1)!
        term = term / i
        result = result + term;
        // now result =1+..+1/t!
        i = i + 1;
        cout << i <<' ' << term <<' ' << result << endl;
    }
    cout << result << endl;
}
```
Concluding Remarks

• There are many, many ways to write a program.
• Most of them will have very similar statements, e.g. i=i +1; term=term/i; which may appear in different orders
• Correctness requires the order to be right, and the statement to be exactly right, i.e. cannot have term=term/ i if term=term/(i+1) is needed
• Having a plan and sticking to it is useful
• The plan must be stated as comments in code
• The input output test cases must be constructed and also be written down, as a part of the code, or elsewhere
• Professional programs require all of the above and more as due diligence
Concluding Remarks 2

How you solve a problem on a computer is often similar to how you solve it by hand.

If a certain trick helps you save manual work, it may help on a computer too.

Finding the general pattern is very important.

You may not deduce all the variables needed right at the beginning, or may discover that the plan you formed does not work. So do add more variables, or revise the plan. But have a plan at all times.