
1

CIS 842:
Specification and Verification
of Reactive Systems

Lecture SPIN-Temporal-Logic:
Introduction to Temporal Logic

Copyright 2001-2002, Matt Dwyer, John Hatcliff, Robby. The syllabus and all lectures for this course are copyrighted
materials and may not be used in other course settings outside of Kansas State University in their current form or modified
form without the express written permission of one of the copyright holders. During this course, students are prohibited
from selling notes to or being paid for taking notes by any person or commercial firm without the express written
permission of one of the copyright holders.

Objectives

n Understand why temporal logic can be a useful
formalism for specifying properties of
concurrent/reactive systems.

n Understand the intuition behind Computation
Tree Logic (CTL) – the specification logic used
e.g., in the well-known SMV model-checker.

n Be able to confidently apply Linear Temporal
Logic (LTL) – the specification logic used in e.g.,
SPIN – to specify simple properties of systems.

n Understand the formal semantics of LTL.

2

Outline

n CTL by example
n LTL by example
n Checking LTL specifications with SPIN
n LTL – formal definition
n Common properties to be stated for

concurrent systems and how they can be
specified using LTL

To Do

n Command-line options for using SPIN to
checking for LTL properties.

n Show never claims being generated from
LTL formula

n For you to do’s…

3

Reasoning about Executions

n We want to reason about execution trees
n tree node = snap shot of the program’s state

n Reasoning consists of two layers
n defining predicates on the program states (control points,

variable values)
n expressing temporal relationships between those predicates

0.1

0.2

0.3 1.1

0.4 1.1 2.1 0.3 1.2

1.1 2.1 0.4 1.2 2.1 1.1 2.20.4 0.4 1.2 2.1 0.4 1.3 2.1

Why Use Temporal Logic?

n Requirements of concurrent, distributed, and
reactive systems are often phrased as
constraints on sequences of events or states or
constraints on execution paths.

n Temporal logic provides a formal, expressive,
and compact notation for realizing such
requirements.

n The temporal logics we consider are also
strongly tied to various computational
frameworks (e.g., automata theory) which
provides a foundation for building verification
tools.

4

Semantic Intuition

Syntax

Computational Tree Logic (CTL)

Φ ::= P …primitive propositions

| !Φ | Φ && Φ | Φ || Φ | Φ -> Φ …propositional connectives

| AG Φ | EG Φ | AF Φ | EF Φ …temporal operators

| AX Φ | EX Φ | A[Φ U Φ] | E[Φ U Φ]

AG p …along All paths p holds Globally

EG p …there Exists a path where p holds Globally

AF p …along All paths p holds at some state in the Future

EF p …there Exists a path where p holds at some state in the Future

path quantifier

temporal operator

Semantic Intuition

Syntax

Computational Tree Logic (CTL)

Φ ::= P …primitive propositions

| !Φ | Φ && Φ | Φ || Φ | Φ -> Φ …propositional connectives

| AG Φ | EG Φ | AF Φ | EF Φ …temporal operators

| AX Φ | EX Φ | A[Φ U Φ] | E[Φ U Φ]

AX p …along All paths, p holds in the neXt state

EX p …there Exists a path where p holds in the neXt state

A[p U q] …along All paths, p holds Until q holds

E[p U q] …there Exists a path where p holds Until q holds

5

Computation Tree Logic

p

p

p

p p p

p

p

p

p

p

p p p p

AG p

Computation Tree Logic

EG p p

p

p

p

6

Computation Tree Logic

AF p

p

p p p

p

p

Computation Tree Logic

EF p

p

7

Computation Tree Logic

AX p

p

p p

p

p p

p

p

p

Computation Tree Logic

EX p

p

p

p

p p p

8

Computation Tree Logic

A[p U q]
p

p

p

q q p

p

q

q

p

p

Computation Tree Logic

E[p U q]
p

p

q q p

p

q

q

q

9

Example CTL Specifications

AG(requested -> AF acknowledged)

From any state, it is possible to get to a restart state

AG(EF restart)

An upwards travelling elevator at the second floor does
not changes its direction when it has passengers
waiting to go to the fifth floor

AG((floor=2 && direction=up && button5pressed)
-> A[direction=up U floor=5])

For any state, a request (e.g., for some
resource) will eventually be acknowledged

Semantics for CTL (excerpts)

n For p∈AP:
s |= p ⇔ p ∈ L(s) s |= ¬p ⇔ p ∉ L(s)

n s |= f ∧ g ⇔ s |= f and s |= g
n s |= f ∨ g ⇔ s |= f or s |= g

n s |= EXf ⇔ ∃π=s0s1... from s: s1 |= f

n s |= E(f U g) ⇔ ∃π=s0s1... from s
∃j≥0 [sj |= g and ∀i : 0≤ i <j [si |= f]]

n s |= EGf ⇔ ∃π=s0s1... from s ∀i ≥ 0: si |= f

Source: Source: Orna GrumbergOrna Grumberg

10

CTL Notes

n Invented by E. Clarke and E. A. Emerson
(early 1980’s)

n Specification language for Symbolic Model
Verifier (SMV) model-checker

n SMV is a symbolic model-checker instead of
an explicit-state model-checker

n Symbolic model-checking uses Binary
Decision Diagrams (BDDs) to represent
boolean functions (both transition system and
specification

Linear Time Logic

Restrict path quantification to “ALL” (no “EXISTS”)

Reason in terms of linear traces instead of branching trees

11

Linear Time Logic (LTL)

[]Φ …always Φ

<>Φ …eventually Φ

Φ U Γ …Φ until Γ

Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ

Φ Φ

Φ Φ Φ Φ Φ Φ Γ Φ Γ

Φ ::= P …primitive propositions
| !Φ | Φ && Φ | Φ || Φ | Φ -> Φ …propositional connectives
| []Φ | <>Φ | Φ U Φ | X Φ …temporal operators

Syntax

Semantic Intuition

Linear Time Logic

n “Along all paths, it must be the case that globally (I.e., in
each state we come to) eventually p will hold”

n Expresses a form of fairness
n p must occur infinitely often along the path
n To check Φ under the assumption of fair traces, check

[]<>p -> Φ

p p p

[]<>p

12

Linear Time Logic

n “Along all paths, eventually it is the case that p holds at
each state)” (i.e., “eventually permanently p”)

n “Any path contains only finitely many !p states”

p p p

pp p p p

<>[]p

Linear Time Logic

n “p unless q”, or “p waiting for q”, or “p weak-until q”

p p p

pp p p p

p W q []p || (p U q)=

ppppp

pp p p pqqqqq

q

q p p pqqppp

13

Checking LTL Specs in SPIN
n Define the predicates/propositions using #define in sys.prom

file (using lowercase letters to begin predicate names)
n e.g., #define bigx x > 1000

n Formalize requirement as an LTL formula
n e.g. “eventually x is greater than 1000” becomes <>(bigx)

n Put the negation of the desired LTL property in file req.ltl
n e.g., (!<>(bigx))

n Run SPIN to create a verifier based on the property
n spin –a –F req.ltl sys.prom

n Compile
n gcc –o pan.exe pan.c

n Run with command-line option (-a) specifying that a liveness
property is being checked
n pan.exe –a

n Display error trail
n spin –t sys.prom

Semantics for LTL

n Semantics of LTL is given with respect to a
(usually infinite) path or trace
n π = s1 s2 s3 …

n We write πi for the suffix starting at si, e.g.,
n π3 = s3 s4 s5 …

n A system satisfies an LTL formula f if each path
through the system satisfies f.

14

Semantics of LTL

n For p∈AP:
n π |= p ⇔ p ∈ L(s1) π |= ¬p ⇔ p ∉ L(s1)
n π |= f ∧ g ⇔ π |= f and π |= g
n π |= f ∨ g ⇔ π |= f or π |= g
n π |= Xf ⇔ π2 |= f
n π |= <>f ⇔ ∃i >= 1. πi |= f
n π |= []f ⇔ ∀i >= 1. πi |= f
n π |= (f U g) ⇔ ∃i >= 1. πi |= g

and ∀j : 1 ≤ j < i-1. πj |= f

LTL Notes

n Invented by Prior (1960’s), and first use
to reason about concurrent systems by A.
Pnueli, Z. Manna, etc.

n LTL model-checkers are usually explicit-
state checkers due to connection between
LTL and automata theory

n Most popular LTL-based checker is SPIN
(G. Holzman)

15

Comparing LTL and CTL

n CTL is not strictly more expression than LTL (and vice
versa)

n CTL* invented by Emerson and Halpern in 1986 to unify
CTL and LTL

n We believe that almost all properties that one wants to express
about software lie in intersection of LTL and CTL

CTL LTL

CTL*

