COMP 5404 Computer Aided Verification

 |nstructor: Doug Howe, HP5360, howe@scs.carleton.ca

 Prerequisite: general CS badkground. Seeinstructor if in
doul.

o Text: Logic in Computer Science: Modeling and Reasoning
about Systems, Huth and Ryan.

o Grading: 60% assgnments (4 or 5), 40% final exam. Fina
exam will be held duing the last ledure.

o Office Hours. Mondays 10-12.

COMP 5404 Winter 2003

Coursetheme

Software verification using formal methods.

COMP 5404 Winter 2003

Testing

o Edsgar Dijkstra (Turing Award winner):
“Teding can never show the absence of bugs, ony their preseace.”

e Tedging canincrease onfidencein aprogram, but not enough for
criticd appli cations:

— Nuclear reactors
— Avionics
— Medicine
— Finance
— Circuits
— Network protocol correctness and security.
* There have been some extremely costly disagers (Intel, Ariane...)

COMP 5404 Winter 2003

A “hi-tedh” solution

Devise tools that verify, with 100% certainty, that a program
satisfies ssme speaficaion of correctness.

Tod input: program + speaficaion.

Tod output: Yedno. If “no’, may also autput error trace.

COMP 5404 Winter 2003

Form of tool input?

e Tool inpus must be prease.
 Bothinpus are expressons in some |language:
1. aprogramming language
2. aspedficaionlanguage.
 Programming languages are predse:
— syntax: what expressons are acceptable
o gpeafied by grammar or parser.
— semantics. what do the expressons mean
o gpedfied by manua or compiler.

COMP 5404 Winter 2003

Formal languages

« A formal language is alanguage with a mathematically
predse syntax and semantics.

« All programming languages are formal |languages.
e English (French, Chinese, etc) isnot aformal language.
e Mathematicsisnot aformal language! (It uses English.)

* To make speafications acceptable for tool input, write them
In aformal specification language.

COMP 5404 Winter 2003

Formal verification tools

| nput: program + formal specification’

Output: yes/no (+ possibly an error trace)

(*) A specification in aformal language.

COMP 5404 Winter 2003

Unique property of formal verification

Since the inputs are have precise mathematical meaning, the
guestion

Does the program meet the specification?

has a precise answer (as opposed to testing, which answers
maybe). Thetool givesthe answer.

Note: there may be bugs in the tool itself, the compiler used
to compile the tool, the operating system running the tool,
the hardware running the operating system.

COMP 5404 Winter 2003

Formal specification languages:. example

ZFC (Zermelo-Fraenkel set theory with Choice)

o Sufficient for most mathematics.

e Based on predicate clculus.

e Examples:

— Ux Ly xUy

x Oy [z Owwlz < (wlx JwLly)

n 3<n 0 -(k Oy x#0 Oy#0 z#0 [
XN+yn= Z)

o ZFC syntax: expresson built using above symbadls (etc).

o ZFC semantics: “first-order structures’.

COMP 5404 Winter 2003

Formal tool built on ZFC

I|nput: program + ZFC speaficaion
Output: yes/no

* Big problem: we can mathematically prove that thereisno
algorithm for this!

o Solution 1: request user inpu If needed.
o Solution 2: restrict the inputs.

COMP 5404 Winter 2003

10

Solution 1: deductive methods

* Require the user to construct aformal proof that the
program meds the speaficaion.

e Tool provides suppart:
— automatic proof of “easy” fads sich as
 basic arithmetic
e basic theories of data structures (lists, arrays €etc)
* type dheding
— proof by analogy
— lemma database
e General, but can reguire a great deal of direction by user.

COMP 5404 Winter 2003

11

Solution 2: algorithmic

Find suitable input languages (programming, speafication)
for which there are efficient algorithms.

User involvement:

— produce the inputs

— set some parameters in the tool for efficiency
*Push-button” technology.

Emphasis on finding error traces in case of “no’ answer.
— A simple “no” isnat so useful in practice.

Typical algorithm isamodel checker: chedk that spec holds
In amode of the program.

COMP 5404 Winter 2003 12

Caveat

 Many of the best approaches to Solution 2 are restricted to
finite state systems.

o Many interesting systems are finite state (e.g. digital
circuits).
« Also, many infinite-state systems can be viewed as finite
state by abstracting away from irrelevant details. E.qQ.
— In network protocols, can ignore packet payload

— In security protocols, can ignore encryption and message
detail s

— In avionics, can ighore sensor detail s.

COMP 5404 Winter 2003

13

First main topic:. CTL modéd checking

« CTL ="Computation Tree Logic”, a spec language.

 There ae many possble programming languages. We'll
use a particular model they can all compil e into.

CTL modd checker input:

“Kripke structure” model of program
+

CTL speaficaion

Output: yes/no, + if no, then error trace (in many cases)

COMP 5404 Winter 2003

14

Preliminaries

Before studying CTL model chedking, need to understand:
o State transition systems.

» Kripke structures.

o Computation paths and computation trees.

e TheCTL formalism.

 How to trandate informal speaficaionsinto CTL.

e CTL formula eguivalencies (to ssimplify model checker).

COMP 5404 Winter 2003 15

States

e Program state: program counter + variable values + heap.
» Heap: ignore.

* Program courter: low-level detail, language dependent. Use
graphicd representation: different nodes are different states.

o Example:
X:=0; y:=0;
for 1:=1 to 3 do

(X:=x+1; y:=y+l1)

If “steps’ are assignments, has 8 steps, and 9 states. the
Initial state and the state after each step.

COMP 5404 Winter 2003 16

State transition diagrams

X:=0; y:=0;
for 1:=1 to 3 do
(X:=x+1; y:=y+1)

|
% S

|

|

@@

|
? D
|

What if we added anew fina line(x: =0; y: =0)?

COMP 5404 Winter 2003 17

Non-ter minating programs

* |In examples of interest, programs will be effedively non-
terminating.

e E.Q.
— circuits run indefinitely
— protocols run repeaedly (and ssmultaneoudly)

— avionics oftware shoud keg running until the arcraft is
switched off

e Termination isuninteresting: we ae interested in what
happens whil e the program is exeauting.

e Trivia to handein state transition dagrams.

COMP 5404 Winter 2003 18

A non-terminating state-tr ansition system

L: for 1:=1 to 3 do
(X:=x+1; y:=y+1);
X:=0; y:=0; go to L

COMP 5404 Winter 2003 19

A trivial kind of model checking

Suppose the specification is that some boolean expresson e
IStrue at each state (i.e. eisan invariant).

E.g. Xx=y inthe previous exampleistrue & every state.

Can ched by running the program and evaluating e after
ead step.

What about propertiesthat aren’t an invariant, e.g.
— “thereisastate where x=2" ?
— “infinitely often there ae states where x=2"
— “every state where y=0 isfollowed by a state where
y=1
What about concurrency and non-determinism?

COMP 5404 Winter 2003

20

Finite state systems

 |f variables can only take on finitely many values (e.g.
x:[1..10], y:bool), then the program isfinite state (there ae
only finitely many program counter values).

|t sufficesto restrict variables to boolean values.

 E.g.x[0..7] can berepresented by 3 boolean variables
using a binary digit representation.

e X=3 correspordsto
X,=0 and x,=1 and x5=1.

 From now on, restrict attention to programs with boolean
variables only.

COMP 5404 Winter 2003 21

Mutex: an example with concurrency

e Mutual exclusion: each process has a critical section: no
two processes can be in their critical sections at the same
time.

e Don't carewhat’sin ead criticd sedion.

e Use “status’ variablesto track sedions. Valuesn, t and C.

o First process
while 1 do

(<non-cs-1>; stl:=t;

when st2=n or st2=t do stl:=c;
<Ccs- 1>;

st 1: =n)

COMP 5404 Winter 2003

22

Mutex example, continued

Second process
while 1 do

(<non-cs-2>; st2:=t;

when stl=n or stl=t do st2:=c;
<CS- 2>;

st 2: =n)

Run processes concurrently, initially st 1=st 2=n.

Booeanvariables: n1, n2, c1, c2, t1, t2 represent
stl,st2,eq.stl1l=t represented by n1=0, t1=1,
c1=0.

In diagram, label only with variables with value 1.

COMP 5404 Winter 2003 23

State transition diagram for mutex

\@/ \@/

Kripkestructures

Definition. Let AP be aset of boolean variables. A Kripke
Sructure over AP isatriple M=(SR,L) where

e Sisafinite set (of states)

e R[] SXS suchthat for all states s, thereisastates such
that (s,s) L R. (Risthetransition relation.)

L[] S- AP (L isthelabelling function)

Writes — s for (s,s) JR.
Sometimes a Kripke structure will have some initial states.

Can translate mutex example to a Kripke structure.

COMP 5404 Winter 2003 25

S={%,S,5 5 S S S Sy initid states: S, = {sy}
R={ (S S1): (S0 &) (81 S), (81, S9), (S0 &)y -0
L(sp)={n1,n2}, L(s)={t1,n2}, L(s,)={cl,n2}, ..

COMP 5404 Winter 2003

26

Pathsin a Kripkestructure

Definition. A path in aKripke structureis an infinite
sequence =Ty, T, Ty, ... wherefor al 1 =21, 1t - 1T,,.

In the example, there is a path
SV T A T i i BT

A path tstarts at astate sif T=s.

It’s also useful, though not formally necessary, to think about
computation trees.

COMP 5404 Winter 2003 27

Computation trees (via unwinding)

l
@L\\@ — /@\/ \G’?
- /G% CSLD /
OO =)
T TR

L(sp)={p}, L(s)={r.p}, L(sp)={a.r}

| nfor mal mutex properties

Safety. alwayshave =(cllE2).

Liveness. whenevert 1, eventually cl. (Similarly for
process?2)

Non-blocking: It’s always true that process1 can aways
progressto astate wheret 1.

No strict sequencing: The protocol isnot atrivial one that
forces dtrict aternation(c1 c2 c¢c1 c2 cl ...).

COMP 5404 Winter 2003 29

CTL

o All the mutex properties can be expressed in CTL.
e CTL formulas are properties of states.

e Formulabuilders: AF, EF, AG, EG, AX, EX, AU, EU, and
boolean connedives.

« “A” =onall paths garting at the given state

« “E" =there exists a path starting at the given state
o “X” =Inthe next state on the path

e “G” =onadll statesin the path (i.e. Globally)

e “F" =onsome state in the path (i.e. in the Future)

o “U” =first formulaholds until some point where the second
formula starts holding.

COMP 5404 Winter 2003 30

CTL continued

 CTL isaforma language: precise syntax and semantics.

 Thereisalinea-time agorithm for model chedking CTL.:

— Input: Kripke structure and aCTL formula

— Qutput: yes/no, answering the question does the K.S
satisfy the formula?

o First algorithm based on explicit analysis of states.

o Later improvement (enormous!) groups states into sets
represented by BDD’s (“binary deasion dagrams”).

COMP 5404 Winter 2003

31

Svyntax of CTL

A CTL formula ¢ has one of the following forms:

e 0,1,p,~¢,00,001 ¢, LU (for any variable p in AP)
e AX¢,EX¢

e AG¢o,EGO)

 AF¢ ,EF¢®

* AlpUO], E[oU¢]

Note AU, EU weird syntax.

COMP 5404 Winter 2003 32

CTL semantics

Definition. A Kripke structure M satisfiesa CTL formula ¢ if
M,s|= ¢ , where M,s|= ¢ isdefined byinduction an the
size of .

[Details omitted — see text page 157.]

COMP 5404 Winter 2003 33

CTL examples. mutex specification

Safety: AG - (c1lc?2).
Liveness. AG (t1 O AF cl).
Non-blocking: AG (n1 O EX t1).

No strict sequencing:
EF (cl OE cl U(-cl OE -c2 Ucl])]).

COMP 5404 Winter 2003

34

Somegeneric CTL examples

1. = EF (Start [-Ready)

2. AG (AF Servi ceAvai l abl e)

3. AG (EF Restart)

4. AG (Request [0 AF Acknow edgnent)

COMP 5404 Winter 2003

35

FIXing mutex

« Addanew variablet urn (initialy 1).

o First process
while 1 do

(<non-cs-1>; stl:=t;
when st 2=n or (st2=t and turn=1l)
do st1l: =c;
<cs- 1>;
st 1. =n)
e Semnd process
while 1 do
(<non-cs-2>; st2:=t;
when st1=n or (stl=t and turn=2)
do st 2: =c;
<CS- 2>;
st 2: =n)

COMP 5404 Winter 2003

36

New Kripke structure

 Note: we @an choosethevariable set AP it'sover. Leaveit
the same — this means the new variablet ur n isignored.

S N
NS TN

COMP 5404 Winter 2003 37

M odel-checking algorithm simplification

e Only need to consider operators O, -, [, AF, EU, EX

e Therest are gquivaentvias: ¢ = iff thetwo formulas
satisfy the same K.S.’sin the same states.

e 1= =0

© QOY = ~(~6 U-y)
© AX ¢ =-EX(~0)

e EG (I) —IAF(—I(I))

e EF ¢ = E[1 U]

COMP 5404 Winter 2003 38

Simplification continued

© AG ¢ = ~EF(~0)

* Al Uyl =-(E[-pU -¢ol-y] OEG-Y)

COMP 5404 Winter 2003

The CTL modé checking algorithm

o |nput: Kripke structure M and CTL formula ¢.

o Output: set of stateswhere ¢ holds. (Can derive the desired
yes/no answer.)

 |dea label graph with subformulae known to be true,
starting with small est.

« Basically afairly ssmple graph agorithm.

COMP 5404 Winter 2003 40

Algorithm top-level

nc(¢y, M):

1. Trandate ¢,soit mentionsonly 0, -, [, AF, EU,
=X, and variables.

2. For each state sof M, initialize T(s) to be the empty set.
T(s) isthe set of subformulae of ¢ known to betrue.

3. Letl bealist of all subformulae of ¢,, sorted in
nondecreasing order of size.

4. Foreach ¢ inl, call the procedure add(¢).
5. Return the set of all ssuchthat ¢, L1 T(S).

COMP 5404 Winter 2003 41

Definition of add(¢) by pattern matching

e add(p) wherepisvariable: if p U L(s) then add p to T(s).
e add(-y): foreachsOS if g O T(s), then add ¢ to T(s).

e add(¢Lp): foreachs S if ¢ LI T(s)and P LI T(s) then
add ¢ to T(s).

o add(EX¢): foreachsl] Sandfor eachs [Ssuch that
s-s,If Y U T(s) then add ¢ to T(s).

COMP 5404 Winter 2003 42

Definition of add(¢) , continued

o add(AFY) : foreachs S if Y LI T(s) then add ¢ to T(s).
Now repeat the following step until no T(s) is changed: if
thereisastate ssuch that ¢ LI T(S') whenever s— S, then
add ¢ to T(s).

e add(E[yUy]): foreachsU S if Y U T(s) then add ¢ to
T(s). Now repeat the following step until no T(s) Is
changed: if thereisastate s such that y L1 T(s) and for some
S, s»>S and¢ U T(s), thenadd ¢ to T(s).

COMP 5404 Winter 2003 43

Complexity

* |M|isthe number of states plus the number of transitions.

* |®,| isthe number of subformulae of ¢,.

o Complexity isO(f(|M|, |dg])) — what isf?

e add, in AF and EUcases, has triply-nested |oops over
states.

e Sofar, lookslike f(x,y)=x3y.

« However, other cases are fine, f(X,y)=x3y, and we can
optimize the two bad cases.

COMP 5404 Winter 2003 44

Optimizing EU

e View asgraph preblam.
* Looking for al swherethereisafinite path starting at s,
with y “true’” along the way, ending at an s where true.
e Consider such pathsin reverse:
— reverse all edgesin graph
— for each node s where Y LI T(S'), run adepth-first seach
starting with s, only visiting nodes swherey L1 T(s).
— for each visited node s, add ¢ to T(9).

 Linear in number of edges of the graph + the number of
NOGdeES.

COMP 5404 Winter 2003 45

Optimizing AF

 Not so easy.

 Notethat AF = -EG-{, so it sufficesto process EGcase
efficiently.

* Badground: astrongly connected component in adirected
graph isamaximal set of nodes C such that any two nodes
In C are onneded by a path using anly nodes from C, and

If C has only one node, then there is an edge from the node
to itself.

e Linear in size of graph.

COMP 5404 Winter 2003 46

Optimizing add(AFY) : add(EGY)

* View as graph problem.
 Remove all nodes swhere Y L1 T(s), cdl resulting graph G.
* Find strongly-conneded componentsC,, ..., C, of G.

 For each node sin one of the C;, run a depth-first search in
the reverse graph of G, starting at s.

* For each visited node s, add ¢ to T(s).

COMP 5404 Winter 2003 47

Example

e Runagorithmon AG AF(cl [c2) and mutex example.
o “Simplifies’ to
-E[-0 U -AF~(~-cllc2)]

o Simulate exeaution by labelling graph with members of
T(9).

COMP 5404 Winter 2003

48

Example continued

Summary

» Defined Kripke structures, modeli ng finite-state systems.

 Defined CTL, aformalism for speafying properties of
Kripke structures.

» Gave graph-based algorithm for deading at which states of
aK.S. M agiven CTL formula ¢ holds.

o Complexity of algorithm: O(| ¢ | x [M]).

COMP 5404 Winter 2003 50

