COMP 5404 Computer Aided Verification

 |nstructor: Doug Howe, HP5360, howe@scs.carleton.ca

 Prerequisite: general CS badkground. Seeinstructor if in
doul.

o Text: Logic in Computer Science: Modeling and Reasoning
about Systems, Huth and Ryan.

o Grading: 60% assgnments (4 or 5), 40% final exam. Fina
exam will be held duing the last ledure.

o Office Hours. Mondays 10-12.
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Coursetheme

Software verification using formal methods.
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Testing

o Edsgar Dijkstra (Turing Award winner):
“Teding can never show the absence of bugs, ony their preseace.”

e Tedging canincrease onfidencein aprogram, but not enough for
criticd appli cations:

— Nuclear reactors
— Avionics
— Medicine
— Finance
— Circuits
— Network protocol correctness and security.
* There have been some extremely costly disagers (Intel, Ariane...)
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A “hi-tedh” solution

Devise tools that verify, with 100% certainty, that a program
satisfies ssme speaficaion of correctness.

Tod input: program + speaficaion.

Tod output: Yedno. If “no’, may also autput error trace.
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Form of tool input?

e Tool inpus must be prease.
 Bothinpus are expressons in some |language:
1. aprogramming language
2. aspedficaionlanguage.
 Programming languages are predse:
— syntax: what expressons are acceptable
o gpeafied by grammar or parser.
— semantics. what do the expressons mean
o gpedfied by manua or compiler.
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Formal languages

« A formal language is alanguage with a mathematically
predse syntax and semantics.

« All programming languages are formal |languages.
e English (French, Chinese, etc) isnot aformal language.
e Mathematicsisnot aformal language! (It uses English.)

* To make speafications acceptable for tool input, write them
In aformal specification language.
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Formal verification tools

| nput: program + formal specification’

Output: yes/no (+ possibly an error trace)

(*) A specification in aformal language.
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Unique property of formal verification

Since the inputs are have precise mathematical meaning, the
guestion

Does the program meet the specification?

has a precise answer (as opposed to testing, which answers
maybe). Thetool givesthe answer.

Note: there may be bugs in the tool itself, the compiler used
to compile the tool, the operating system running the tool,
the hardware running the operating system.
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Formal specification languages:. example

ZFC (Zermelo-Fraenkel set theory with Choice)

o Sufficient for most mathematics.

e Based on predicate clculus.

e Examples:

— Ux Ly xUy

x Oy [z Owwlz < (wlx JwLly)

n 3<n 0 -(k Oy x#0 Oy#0 z#0 [
XN+yn= Z)

o ZFC syntax: expresson built using above symbadls (etc).

o ZFC semantics: “first-order structures’.
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Formal tool built on ZFC

I|nput: program + ZFC speaficaion
Output: yes/no

* Big problem: we can mathematically prove that thereisno
algorithm for this!

o Solution 1: request user inpu If needed.
o Solution 2: restrict the inputs.
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Solution 1: deductive methods

* Require the user to construct aformal proof that the
program meds the speaficaion.

e Tool provides suppart:
— automatic proof of “easy” fads sich as
 basic arithmetic
e basic theories of data structures (lists, arrays €etc)
* type dheding
— proof by analogy
— lemma database
e General, but can reguire a great deal of direction by user.
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Solution 2: algorithmic

Find suitable input languages (programming, speafication)
for which there are efficient algorithms.

User involvement:

— produce the inputs

— set some parameters in the tool for efficiency
*Push-button” technology.

Emphasis on finding error traces in case of “no’ answer.
— A simple “no” isnat so useful in practice.

Typical algorithm isamodel checker: chedk that spec holds
In amode of the program.
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Caveat

 Many of the best approaches to Solution 2 are restricted to
finite state systems.

o Many interesting systems are finite state (e.g. digital
circuits).
« Also, many infinite-state systems can be viewed as finite
state by abstracting away from irrelevant details. E.qQ.
— In network protocols, can ignore packet payload

— In security protocols, can ignore encryption and message
detail s

— In avionics, can ighore sensor detail s.
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First main topic:. CTL modéd checking

« CTL ="Computation Tree Logic”, a spec language.

 There ae many possble programming languages. We'll
use a particular model they can all compil e into.

CTL modd checker input:

“Kripke structure” model of program
+

CTL speaficaion

Output: yes/no, + if no, then error trace (in many cases)
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Preliminaries

Before studying CTL model chedking, need to understand:
o State transition systems.

» Kripke structures.

o Computation paths and computation trees.

e TheCTL formalism.

 How to trandate informal speaficaionsinto CTL.

e CTL formula eguivalencies (to ssimplify model checker).
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States

e Program state: program counter + variable values + heap.
» Heap: ignore.

* Program courter: low-level detail, language dependent. Use
graphicd representation: different nodes are different states.

o Example:
X:=0; y:=0;
for 1:=1 to 3 do

(X:=x+1; y:=y+l1)

If “steps’ are assignments, has 8 steps, and 9 states. the
Initial state and the state after each step.
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State transition diagrams

X:=0; y:=0;
for 1:=1 to 3 do
(X:=x+1; y:=y+1)

|
% S

|

|

@@

|
? D
|

What if we added anew fina line(x: =0; y: =0)?
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Non-ter minating programs

* |In examples of interest, programs will be effedively non-
terminating.

e E.Q.
— circuits run indefinitely
— protocols run repeaedly (and ssmultaneoudly)

— avionics oftware shoud keg running until the arcraft is
switched off

e Termination isuninteresting: we ae interested in what
happens whil e the program is exeauting.

e Trivia to handein state transition dagrams.
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A non-terminating state-tr ansition system

L: for 1:=1 to 3 do
(X:=x+1; y:=y+1);
X:=0; y:=0; go to L
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A trivial kind of model checking

Suppose the specification is that some boolean expresson e
IStrue at each state (i.e. eisan invariant).

E.g. Xx=y inthe previous exampleistrue & every state.

Can ched by running the program and evaluating e after
ead step.

What about propertiesthat aren’t an invariant, e.g.
— “thereisastate where x=2" ?
— “infinitely often there ae states where x=2"
— “every state where y=0 isfollowed by a state where
y=1
What about concurrency and non-determinism?
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Finite state systems

 |f variables can only take on finitely many values (e.g.
x:[1..10], y:bool), then the program isfinite state (there ae
only finitely many program counter values).

|t sufficesto restrict variables to boolean values.

 E.g.x[0..7] can berepresented by 3 boolean variables
using a binary digit representation.

e X=3 correspordsto
X,=0 and x,=1 and x5=1.

 From now on, restrict attention to programs with boolean
variables only.
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Mutex: an example with concurrency

e Mutual exclusion: each process has a critical section: no
two processes can be in their critical sections at the same
time.

e Don't carewhat’sin ead criticd sedion.

e Use “status’ variablesto track sedions. Valuesn, t and C.

o First process
while 1 do

(<non-cs-1>; stl:=t;

when st2=n or st2=t do stl:=c;
<Ccs- 1>;

st 1: =n)
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Mutex example, continued

Second process
while 1 do

(<non-cs-2>; st2:=t;

when stl=n or stl=t do st2:=c;
<CS- 2>;

st 2: =n)

Run processes concurrently, initially st 1=st 2=n.

Booeanvariables: n1, n2, c1, c2, t1, t2 represent
stl,st2,eq.stl1l=t represented by n1=0, t1=1,
c1=0.

In diagram, label only with variables with value 1.
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State transition diagram for mutex

\@/ \@/




Kripkestructures

Definition. Let AP be aset of boolean variables. A Kripke
Sructure over AP isatriple M=(SR,L) where

e Sisafinite set (of states)

e R[] SXS suchthat for all states s, thereisastates such
that (s,s) L R. (Risthetransition relation.)

L[] S- AP (L isthelabelling function)

Writes — s for (s,s) JR.
Sometimes a Kripke structure will have some initial states.

Can translate mutex example to a Kripke structure.
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S={%,S,5 5 S S S Sy initid states: S, = {sy}
R={ (S S1): (S0 &) (81 S), (81, S9), (S0 &)y -0
L(sp)={n1,n2}, L(s)={t1,n2}, L(s,)={cl,n2}, ..
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Pathsin a Kripkestructure

Definition. A path in aKripke structureis an infinite
sequence =Ty, T, Ty, ... wherefor al 1 =21, 1t - 1T,,.

In the example, there is a path
SV T A T i i BT

A path tstarts at astate sif T=s.

It’s also useful, though not formally necessary, to think about
computation trees.
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Computation trees (via unwinding)

l
@L\\@ — /@\/ \G’?
- /G% CSLD /
OO =)
T TR

L(sp)={p}, L(s)={r.p}, L(sp)={a.r}



| nfor mal mutex properties

Safety. alwayshave =(cllE2).

Liveness. whenevert 1, eventually cl. ( Similarly for
process?2)

Non-blocking: It’s always true that process1 can aways
progressto astate wheret 1.

No strict sequencing: The protocol isnot atrivial one that
forces dtrict aternation(c1 c2 c¢c1 c2 cl ...).
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CTL

o All the mutex properties can be expressed in CTL.
e CTL formulas are properties of states.

e Formulabuilders: AF, EF, AG, EG, AX, EX, AU, EU, and
boolean connedives.

« “A” =onall paths garting at the given state

« “E" =there exists a path starting at the given state
o “X” =Inthe next state on the path

e “G” =onadll statesin the path (i.e. Globally)

e “F" =onsome state in the path (i.e. in the Future)

o “U” =first formulaholds until some point where the second
formula starts holding.
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CTL continued

 CTL isaforma language: precise syntax and semantics.

 Thereisalinea-time agorithm for model chedking CTL.:

— Input: Kripke structure and aCTL formula

— Qutput: yes/no, answering the question does the K.S
satisfy the formula?

o First algorithm based on explicit analysis of states.

o Later improvement (enormous!) groups states into sets
represented by BDD’s (“binary deasion dagrams”).
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Svyntax of CTL

A CTL formula ¢ has one of the following forms:

e 0,1,p,~¢,00,001 ¢, LU (for any variable p in AP)
e AX¢,EX¢

e AG¢o,EGO)

 AF¢ ,EF¢®

* AlpUO ], E[oU¢]

Note AU, EU weird syntax.
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CTL semantics

Definition. A Kripke structure M satisfiesa CTL formula ¢ if
M,s|= ¢ , where M,s|= ¢ isdefined byinduction an the
size of .

[ Details omitted — see text page 157.]
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CTL examples. mutex specification

Safety: AG - (c1lc?2).
Liveness. AG (t1 O AF cl).
Non-blocking: AG (n1 O EX t1).

No strict sequencing:
EF (cl OE cl U(-cl OE -c2 Ucl])]).
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Somegeneric CTL examples

1. = EF (Start [-Ready)

2. AG (AF Servi ceAvai l abl e)

3. AG (EF Restart)

4. AG (Request [0 AF Acknow edgnent)
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FIXing mutex

« Addanew variablet urn (initialy 1).

o First process
while 1 do

(<non-cs-1>; stl:=t;
when st 2=n or (st2=t and turn=1l)
do st1l: =c;
<cs- 1>;
st 1. =n)
e Semnd process
while 1 do
(<non-cs-2>; st2:=t;
when st1=n or (stl=t and turn=2)
do st 2: =c;
<CS- 2>;
st 2: =n)
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New Kripke structure

 Note: we @an choosethevariable set AP it'sover. Leaveit
the same — this means the new variablet ur n isignored.

S N
NS TN
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M odel-checking algorithm simplification

e Only need to consider operators O, -, [, AF, EU, EX

e Therest are gquivaentvias: ¢ = iff thetwo formulas
satisfy the same K.S.’sin the same states.

e 1= =0

© QOY = ~(~6 U-y)
© AX ¢ =-EX(~0)

e EG (I) —IAF(—I(I))

e EF ¢ = E[1 U ]
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Simplification continued

© AG ¢ = ~EF(~0)

* Al Uyl =-( E[-pU -¢ol-y] OEG-Y)
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The CTL modé checking algorithm

o |nput: Kripke structure M and CTL formula ¢.

o Output: set of stateswhere ¢ holds. (Can derive the desired
yes/no answer.)

 |dea label graph with subformulae known to be true,
starting with small est.

« Basically afairly ssmple graph agorithm.
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Algorithm top-level

nc( ¢y, M):

1. Trandate ¢,soit mentionsonly 0, -, [, AF, EU,
=X, and variables.

2. For each state sof M, initialize T(s) to be the empty set.
T(s) isthe set of subformulae of ¢ known to betrue.

3. Letl bealist of all subformulae of ¢,, sorted in
nondecreasing order of size.

4. Foreach ¢ inl, call the procedure add(¢).
5. Return the set of all ssuchthat ¢, L1 T(S).
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Definition of add( ¢) by pattern matching

e add( p) wherepisvariable: if p U L(s) then add p to T(s).
e add(-y): foreachsOS if g O T(s), then add ¢ to T(s).

e add( ¢Lp): foreachs S if ¢ LI T(s)and P LI T(s) then
add ¢ to T(s).

o add( EX¢): foreachsl] Sandfor eachs [ Ssuch that
s-s,If Y U T(s) then add ¢ to T(s).
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Definition of add( ¢) , continued

o add( AFY) : foreachs S if Y LI T(s) then add ¢ to T(s).
Now repeat the following step until no T(s) is changed: if
thereisastate ssuch that ¢ LI T(S') whenever s— S, then
add ¢ to T(s).

e add( E[ yUy]): foreachsU S if Y U T(s) then add ¢ to
T(s). Now repeat the following step until no T(s) Is
changed: if thereisastate s such that y L1 T(s) and for some
S, s»>S and¢ U T(s), thenadd ¢ to T(s).
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Complexity

* |M|isthe number of states plus the number of transitions.

* |®,| isthe number of subformulae of ¢,.

o Complexity isO( f(|M|, |dg]) ) — what isf?

e add, in AF and EUcases, has triply-nested |oops over
states.

e Sofar, lookslike f(x,y)=x3y.

« However, other cases are fine, f(X,y)=x3y, and we can
optimize the two bad cases.
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Optimizing EU

e View asgraph preblam.
* Looking for al swherethereisafinite path starting at s,
with y “true’” along the way, ending at an s where  true.
e Consider such pathsin reverse:
— reverse all edgesin graph
— for each node s where Y LI T(S'), run adepth-first seach
starting with s, only visiting nodes swherey L1 T(s).
— for each visited node s, add ¢ to T(9).

 Linear in number of edges of the graph + the number of
NOGdeES.
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Optimizing AF

 Not so easy.

 Notethat AF = -EG-{, so it sufficesto process EGcase
efficiently.

* Badground: astrongly connected component in adirected
graph isamaximal set of nodes C such that any two nodes
In C are onneded by a path using anly nodes from C, and

If C has only one node, then there is an edge from the node
to itself.

e Linear in size of graph.
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Optimizing add( AFY) :  add( EGY)

* View as graph problem.
 Remove all nodes swhere Y L1 T(s), cdl resulting graph G.
* Find strongly-conneded componentsC,, ..., C, of G.

 For each node sin one of the C;, run a depth-first search in
the reverse graph of G, starting at s.

* For each visited node s, add ¢ to T(s).
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Example

e Runagorithmon AG AF(cl [ c2) and mutex example.
o “Simplifies’ to
-E[ -0 U -AF~(~-cllc2)]

o Simulate exeaution by labelling graph with members of
T(9).
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Example continued



Summary

» Defined Kripke structures, modeli ng finite-state systems.

 Defined CTL, aformalism for speafying properties of
Kripke structures.

» Gave graph-based algorithm for deading at which states of
aK.S. M agiven CTL formula ¢ holds.

o Complexity of algorithm: O(| ¢ | x [M]).
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