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COMP 5404 Computer Aided Verification

• Instructor: Doug Howe, HP5360, howe@scs.carleton.ca

• Prerequisite: general CS background.  See instructor if in 
doubt.

• Text: Logic in Computer Science: Modeling and Reasoning 
about Systems, Huth and Ryan.

• Grading: 60% assignments (4 or 5), 40% final exam.  Final 
exam will be held during the last lecture.

• Office Hours: Mondays 10-12.
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Course theme

Software verification using formal methods.
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Testing

• Edsgar Dijkstra (Turing Award winner):
“Testing can never show the absence of bugs, only their presence.”

• Testing can increase confidence in a program, but not enough for
critical applications:

– Nuclear reactors

– Avionics

– Medicine

– Finance

– Circuits

– Network protocol correctness and security.

• There have been some extremely costly disasters (Intel, Ariane…)
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A “ hi-tech” solution

Devise tools that verify, with 100% certainty, that a program 

satisfies some specification of correctness.

Tool input: program + specification.

Tool output: Yes/no.  If “no” , may also output error trace.
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Form of tool input?

• Tool inputs must be precise.

• Both inputs are expressions in some language:

1. a programming language

2. a specification language. 

• Programming languages are precise:

– syntax: what expressions are acceptable

• specified by grammar or parser.

– semantics: what do the expressions mean

• specified by manual or compiler.
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Formal languages

• A formal language is a language with a mathematically 
precise syntax and semantics.

• All programming languages are formal languages.

• English (French, Chinese, etc) is not a formal language.

• Mathematics is not a formal language!  (It uses English.)

• To make specifications acceptable for tool input, write them 
in a formal specification language.
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Formal verification tools

Input: program + formal specification*

Output: yes/no (+ possibly an error trace)

(*) A specification in a formal language.
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Unique property of formal verification

Since the inputs are have precise mathematical meaning, the

question 

Does the program meet the specification?

has a precise answer (as opposed to testing, which answers 

maybe).  The tool gives the answer.

Note: there may be bugs in the tool itself, the compiler used 

to compile the tool, the operating system running the tool, 

the hardware running the operating system.
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Formal specification languages: example

ZFC (Zermelo-Fraenkel set theory with Choice)

• Suff icient for most mathematics.

• Based on predicate calculus.

• Examples:

– ∀x ∃y  x∈y

– ∀x ∀y ∃z ∀w w∈z ⇔ (w∈x ∧ w∈y)

– ∀n  3≤n  ⇒ ¬(∃x ∃y ∃z  x≠0 ∧ y≠0 ∧ z≠0 ∧
xn+yn = zn)

• ZFC syntax: expression buil t using above symbols (etc).

• ZFC semantics: “ first-order structures” .
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Formal tool built on ZFC

Input: program + ZFC specification

Output: yes/no

• Big problem: we can mathematically prove that there is no 
algorithm for this!

• Solution 1: request user input if needed.

• Solution 2: restrict the inputs.
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Solution 1: deductive methods

• Require the user to construct a formal proof that the 
program meets the specification.

• Tool provides support:

– automatic proof of “easy” facts such as

• basic arithmetic

• basic theories of data structures (lists, arrays etc)

• type checking

– proof by analogy

– lemma database

• General, but can require a great deal of direction by user.
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Solution 2: algorithmic

• Find suitable input languages (programming, specification) 
for which there are eff icient algorithms.

• User involvement:

– produce the inputs

– set some parameters in the tool for efficiency

• “Push-button” technology.

• Emphasis on finding error traces in case of “no” answer.

– A simple “no” is not so useful in practice.

• Typical algorithm is a model checker: check that spec holds 
in a model of the program.
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Caveat

• Many of the best approaches to Solution 2 are restricted to 
finite state systems.

• Many interesting systems are finite state (e.g. digital 
circuits).

• Also, many infinite-state systems can be viewed as finite 
state by abstracting away from irrelevant details.  E.g.

– in network protocols, can ignore packet payload

– in security protocols, can ignore encryption and message 
details

– in avionics, can ignore sensor details.
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First main topic: CTL model checking

• CTL = “Computation Tree Logic”, a spec language.

• There are many possible programming languages.  We’ ll 
use a particular model they can all compile into.

CTL model checker input: 

“Kripke structure” model of program

+

CTL specification

Output: yes/no, + if no, then error trace (in many cases)
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Preliminaries

Before studying CTL model checking, need to understand:

• State transition systems.

• Kripke structures.

• Computation paths and computation trees.

• The CTL formalism.

• How to translate informal specifications into CTL.

• CTL formula equivalencies (to simplify model checker).
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States

• Program state: program counter + variable values + heap.

• Heap: ignore.

• Program counter: low-level detail, language dependent.  Use 
graphical representation: different nodes are different states.

• Example:
x:=0; y:=0;
for i:=1 to 3 do
(x:=x+1; y:=y+1)

If “steps” are assignments, has 8 steps, and 9 states: the 
initial state and the state after each step.
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State transition diagrams

x:=0; y:=0;
for i:=1 to 3 do
(x:=x+1; y:=y+1)
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x=1
y=0

x=1
y=1

x=2
y=1

x=2
y=2

x=3
y=2

x=3
y=3

What if we added a new final line (x:=0; y:=0)?
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Non-terminating programs

• In examples of interest, programs will be effectively non-
terminating.

• E.g. 

– circuits run indefinitely

– protocols run repeatedly (and simultaneously)

– avionics software should keep running until the aircraft is 
switched off

• Termination is uninteresting: we are interested in what 
happens while the program is executing.

• Trivial to handle in state transition diagrams.
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A non-terminating state-transition system

x:=0; y:=0;
L: for i:=1 to 3 do

(x:=x+1; y:=y+1);
x:=0; y:=0; go to L
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A trivial kind of model checking

• Suppose the specification is that some boolean expression e
is true at each state (i.e. e is an invariant).

• E.g. x=y in the previous example is true at every state.

• Can check by running the program and evaluating e after 
each step.

• What about properties that aren’ t an invariant, e.g. 

– “ there is a state where x=2” ?

– “ infinitely often there are states where x=2”

– “every state where y=0 is followed by a state where 
y=1”

• What about concurrency and non-determinism?
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Finite state systems

• If variables can only take on finitely many values (e.g. 
x:[1..10], y:bool), then the program is finite state (there are 
only finitely many program counter values).

• It suffices to restrict variables to boolean values.

• E.g. x:[0..7] can be represented by 3 boolean variables 
using a binary digit representation.

• x=3 corresponds to
x1=0 and x2=1 and x3=1.

• From now on, restrict attention to programs with boolean
variables only.
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Mutex: an example with concurrency

• Mutual exclusion: each process has a critical section: no 
two processes can be in their critical sections at the same 
time.   

• Don’ t care what’s in each critical section.
• Use “status” variables to track sections.  Values n, t and c.

• First process:
while 1 do 
(<non-cs-1>; st1:=t; 
when st2=n or st2=t do st1:=c;
<cs-1>;
st1:=n)
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Mutex example, continued

• Second process:
while 1 do 
(<non-cs-2>; st2:=t; 
when st1=n or st1=t do st2:=c;
<cs-2>;
st2:=n)

• Run processes concurrently, initially st1=st2=n.

• Boolean variables: n1, n2, c1, c2, t1, t2 represent 
st1, st2, e.g. st1=t represented by n1=0, t1=1, 
c1=0. 

• In diagram, label only with variables with value 1.



COMP 5404 Winter 2003 24

State transition diagram for mutex
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Kripke structures

Definition.  Let AP be a set of boolean variables. A Kripke 
Structure over AP is a triple M=(S,R,L) where

• S is a finite set (of states)

• R ⊆ S×S such that for all states s, there is a state s’ such 
that (s,s’ ) ∈ R. (R is the transition relation.)

• L ∈ S→ AP  (L is the labell ing function)

Write s → s’ for (s,s’ ) ∈ R.
Sometimes a Kripke structure wil l have some initial states.

Can translate mutex example to a Kripke structure.
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n1
n2

n1
t2

t1
c2

t1
t2

n1
c2

t1
n2

c1
t1

c1
n2

s0

s1

s2

s4

s3

s5

s7

s6

S = {s0, s1, s2, s3, s4, s5, s6, s7}     initial states: S0 = {s0}  
R = { (s0, s1), (s0, s5), (s1, s2), (s1, s3), (s2, s0),  ...}
L(s0)={n1,n2},   L(s1)={t1,n2},   L(s2)={c1,n2},   ...
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Paths in a Kripke structure

Definition.  A path in a Kripke structure is an infinite 
sequence π = π1, π2, π3, ... where for all i ≥ 1, πι → πι+1.

In the example, there is a path

s0 → s5 → s6 → s0 → s5 → s6 → s0 → ...

A path π starts at a state s if π1=s.

It’s also useful, though not formally necessary, to think about

computation trees.
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Computation trees (via unwinding)

s0

s2 s1

s0

s2

s2

s2

s1

s1

s0

s2 s1
s0s1

L(s0)={p},   L(s1)={r,p},   L(s0)={q,r}
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Informal mutex properties

Safety: always have ¬(c1∧c2).

Liveness: whenever t1, eventually c1. (Similarly for 
process 2)

Non-blocking: It’s always true that process 1 can always 
progress to a state where t1.

No strict sequencing: The protocol is not a trivial one that 
forces strict alternation (c1 c2 c1 c2 c1 ...).
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CTL

• All the mutex properties can be expressed in CTL.

• CTL formulas are properties of states.  

• Formula builders: AF, EF, AG, EG, AX, EX, AU, EU, and 
boolean connectives.

• “A” = on all paths starting at the given state

• “E” = there exists a path starting at the given state

• “X” = in the next state on the path

• “G” = on all states in the path (i.e. Globally)

• “F” = on some state in the path (i.e. in the Future)

• “U” = first formula holds until some point where the second 
formula starts holding.
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CTL continued

• CTL is a formal language: precise syntax and semantics.

• There is a linear-time algorithm for model checking CTL:

– Input: Kripke structure and a CTL formula

– Output: yes/no, answering the question does the K.S. 
satisfy the formula?

• First algorithm based on explicit analysis of states.

• Later improvement (enormous!) groups states into sets 
represented by BDD’s (“binary decision diagrams”).
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Syntax of CTL

A CTL formula ϕ has one of the following forms:

• 0, 1, p, ¬ ϕ, ϕ ∧ ϕ, ϕ ⇒ ϕ, ϕ ∨ ϕ (for any variable p in AP)
• AX ϕ , EXϕ
• AGϕ , EGϕ
• AF ϕ , EF ϕ
• A[ϕ Uϕ ], E[ϕ Uϕ ]

Note AU, EUweird syntax.
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CTL semantics

Definition.  A Kripke structure M satisfies a CTL formula ϕ if 
M,s |= ϕ , where M,s |= ϕ is defined by induction on the 
size of ϕ.

[Details omitted – see text page 157.]
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CTL examples: mutex specification

Safety:  AG ¬(c1∧c2).

Liveness: AG (t1 ⇒ AF c1).

Non-blocking: AG (n1 ⇒ EX t1).

No strict sequencing: 

EF (c1 ∧ E[c1 U (¬c1 ∧ E[¬c2 U c1])]).
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Some generic CTL examples

1. ¬ EF (Start ∧ ¬Ready)
2. AG (AF ServiceAvailable)

3. AG (EF Restart)

4. AG (Request ⇒ AF Acknowledgment)
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Fixing mutex

• Add a new variable turn (initially 1).
• First process:
while 1 do 
(<non-cs-1>; st1:=t; 
when st2=n or (st2=t and turn=1)
do st1:=c;

<cs-1>;
st1:=n)

• Second process:
while 1 do 
(<non-cs-2>; st2:=t; 
when st1=n or (st1=t and turn=2)
do st2:=c;

<cs-2>;
st2:=n)
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New Kripke structure

• Note: we can choose the variable set AP it’ s over.  Leave it 
the same – this means the new variable turn is ignored.

n1
n2

n1
t2

t1
c2

t1
t2

n1
c2

t1
n2

c1
t1

c1
n2

t1
t2
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Model-checking algorithm simplification

• Only need to consider operators 0, ¬, ∧, AF, EU, EX.

• The rest are equivalent via ≡: ϕ ≡ ψ iff the two formulas 
satisfy the same K.S.’s in the same states.

• 1 ≡ ¬0

• ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ)
• AX ϕ  ≡ ¬EX( ¬ϕ)

• EG ϕ ≡ ¬AF( ¬ϕ)

• EF ϕ ≡ E[ 1 U ψ]
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Simplification continued

• AG ϕ ≡ ¬EF( ¬ϕ)

• A[ ϕ U ψ] ≡ ¬( E[ ¬ψ U ¬ϕ∧¬ψ] ∨ EG ¬ψ )
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The CTL model checking algorithm

• Input: Kripke structure M and CTL formula ϕ.

• Output: set of states where ϕ holds.  (Can derive the desired 
yes/no answer.) 

• Idea: label graph with subformulae known to be true, 
starting with smallest.

• Basically a fairly simple graph algorithm.
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Algorithm top-level

mc(ϕ0 ,M):

1. Translate ϕ0 so it mentions only 0, ¬, ∧, AF, EU, 
EX, and variables.

2. For each state s of M, initialize T(s) to be the empty set.  
T(s) is the set of subformulae of ϕ known to be true.

3. Let l be a list of all subformulae of ϕ0, sorted in 
nondecreasing order of size.

4. For each ϕ in l, call the procedure add(ϕ).

5. Return the set of all s such that ϕ0 ∈ T(s).
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Definition of add(ϕ) by pattern matching

• add( p) where p is variable: if p ∈ L(s) then add p to T(s).

• add( ¬ψ) : for each s ∈ S, if ψ ∉ T(s), then add ϕ to T(s).

• add( ϕ∧ψ) : for each s ∈ S, if ϕ ∈ T(s) and ψ ∈ T(s) then 
add ϕ to T(s).

• add( EXψ) : for each s ∈ S and for each s’ ∈ S such that 
s→s’ , if ψ ∈ T(s) then add ϕ to T(s).



COMP 5404 Winter 2003 43

Definition of add(ϕ), continued

• add( AFψ) : for each s ∈ S, if ψ ∈ T(s) then add ϕ to T(s).  
Now repeat the following step until no T(s) is changed: if 
there is a state s such that ϕ ∈ T(s’ ) whenever s→s’ , then 
add ϕ to T(s).

• add( E[ γ Uψ]) : for each s ∈ S, if ψ ∈ T(s) then add ϕ to 
T(s).  Now repeat the following step until no T(s) is 
changed: if there is a state s such that γ ∈ T(s) and for some 
s’ , s→s’ and ϕ ∈ T(s’ ), then add ϕ to T(s).
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Complexity

• |M| is the number of states plus the number of transitions.

• |ϕ0| is the number of subformulae of ϕ0.

• Complexity is O( f(|M|, |ϕ0|) )  – what is f?
• add, in AF and EUcases, has triply-nested loops over 

states.

• So far, looks like f(x,y)=x3y.

• However, other cases are fine,  f(x,y)=x3y, and we can 
optimize the two bad cases.
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Optimizing EU

• View as graph problem.

• Looking for all s where there is a finite path starting at s, 
with γ “ true” along the way, ending at an s’ where ψ true.

• Consider such paths in reverse:

– reverse all edges in graph

– for each node s’ where ψ ∈ T(s’ ), run a depth-first search 
starting with s’ , only visiting nodes s where γ ∈ T(s).

– for each visited node s, add ϕ to T(s).

• Linear in number of edges of the graph + the number of 
nodes.
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Optimizing AF

• Not so easy.  

• Note that AFψ ≡ ¬EG¬ψ, so it suff ices to process EG case 
eff iciently.

• Background: a strongly connected component in a directed 
graph is a maximal set of nodes C such that any two nodes 
in C are connected by a path using only nodes from C, and 
if C has only one node, then there is an edge from the node 
to itself.

• Linear in size of graph.



COMP 5404 Winter 2003 47

Optimizing add(AFψ): add(EGψ)

• View as graph problem.

• Remove all nodes s where ψ ∉ T(s), call resulting graph G.

• Find strongly-connected components C1, ..., Ck  of G.

• For each node s in one of the Ci, run a depth-first search in 
the reverse graph of G, starting at s.

• For each visited node s, add ϕ to T(s).



COMP 5404 Winter 2003 48

Example

• Run algorithm on AG AF(c1 ∨ c2)and mutex example.

• “Simplifies” to 
¬E[¬0 U ¬AF¬(¬c1∧¬c2)]

• Simulate execution by labelling graph with members of 
T(s).
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Example continued
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Summary

• Defined Kripke structures, modeling finite-state systems.

• Defined CTL, a formalism for specifying properties of 
Kripke structures.

• Gave graph-based algorithm for deciding at which states of 
a K.S. M a given CTL formula ϕ holds.

• Complexity of algorithm: O(| ϕ | × |M|).


