
COMP 5404 Winter 2003 1

COMP 5404 Computer Aided Verification

• Instructor: Doug Howe, HP5360, howe@scs.carleton.ca

• Prerequisite: general CS background. See instructor if in
doubt.

• Text: Logic in Computer Science: Modeling and Reasoning
about Systems, Huth and Ryan.

• Grading: 60% assignments (4 or 5), 40% final exam. Final
exam will be held during the last lecture.

• Office Hours: Mondays 10-12.

COMP 5404 Winter 2003 2

Course theme

Software verification using formal methods.

COMP 5404 Winter 2003 3

Testing

• Edsgar Dijkstra (Turing Award winner):
“Testing can never show the absence of bugs, only their presence.”

• Testing can increase confidence in a program, but not enough for
critical applications:

– Nuclear reactors

– Avionics

– Medicine

– Finance

– Circuits

– Network protocol correctness and security.

• There have been some extremely costly disasters (Intel, Ariane…)

COMP 5404 Winter 2003 4

A “ hi-tech” solution

Devise tools that verify, with 100% certainty, that a program

satisfies some specification of correctness.

Tool input: program + specification.

Tool output: Yes/no. If “no” , may also output error trace.

COMP 5404 Winter 2003 5

Form of tool input?

• Tool inputs must be precise.

• Both inputs are expressions in some language:

1. a programming language

2. a specification language.

• Programming languages are precise:

– syntax: what expressions are acceptable

• specified by grammar or parser.

– semantics: what do the expressions mean

• specified by manual or compiler.

COMP 5404 Winter 2003 6

Formal languages

• A formal language is a language with a mathematically
precise syntax and semantics.

• All programming languages are formal languages.

• English (French, Chinese, etc) is not a formal language.

• Mathematics is not a formal language! (It uses English.)

• To make specifications acceptable for tool input, write them
in a formal specification language.

COMP 5404 Winter 2003 7

Formal verification tools

Input: program + formal specification*

Output: yes/no (+ possibly an error trace)

(*) A specification in a formal language.

COMP 5404 Winter 2003 8

Unique property of formal verification

Since the inputs are have precise mathematical meaning, the

question

Does the program meet the specification?

has a precise answer (as opposed to testing, which answers

maybe). The tool gives the answer.

Note: there may be bugs in the tool itself, the compiler used

to compile the tool, the operating system running the tool,

the hardware running the operating system.

COMP 5404 Winter 2003 9

Formal specification languages: example

ZFC (Zermelo-Fraenkel set theory with Choice)

• Suff icient for most mathematics.

• Based on predicate calculus.

• Examples:

– ∀x ∃y x∈y

– ∀x ∀y ∃z ∀w w∈z ⇔ (w∈x ∧ w∈y)

– ∀n 3≤n ⇒ ¬(∃x ∃y ∃z x≠0 ∧ y≠0 ∧ z≠0 ∧
xn+yn = zn)

• ZFC syntax: expression buil t using above symbols (etc).

• ZFC semantics: “ first-order structures” .

COMP 5404 Winter 2003 10

Formal tool built on ZFC

Input: program + ZFC specification

Output: yes/no

• Big problem: we can mathematically prove that there is no
algorithm for this!

• Solution 1: request user input if needed.

• Solution 2: restrict the inputs.

COMP 5404 Winter 2003 11

Solution 1: deductive methods

• Require the user to construct a formal proof that the
program meets the specification.

• Tool provides support:

– automatic proof of “easy” facts such as

• basic arithmetic

• basic theories of data structures (lists, arrays etc)

• type checking

– proof by analogy

– lemma database

• General, but can require a great deal of direction by user.

COMP 5404 Winter 2003 12

Solution 2: algorithmic

• Find suitable input languages (programming, specification)
for which there are eff icient algorithms.

• User involvement:

– produce the inputs

– set some parameters in the tool for efficiency

• “Push-button” technology.

• Emphasis on finding error traces in case of “no” answer.

– A simple “no” is not so useful in practice.

• Typical algorithm is a model checker: check that spec holds
in a model of the program.

COMP 5404 Winter 2003 13

Caveat

• Many of the best approaches to Solution 2 are restricted to
finite state systems.

• Many interesting systems are finite state (e.g. digital
circuits).

• Also, many infinite-state systems can be viewed as finite
state by abstracting away from irrelevant details. E.g.

– in network protocols, can ignore packet payload

– in security protocols, can ignore encryption and message
details

– in avionics, can ignore sensor details.

COMP 5404 Winter 2003 14

First main topic: CTL model checking

• CTL = “Computation Tree Logic”, a spec language.

• There are many possible programming languages. We’ ll
use a particular model they can all compile into.

CTL model checker input:

“Kripke structure” model of program

+

CTL specification

Output: yes/no, + if no, then error trace (in many cases)

COMP 5404 Winter 2003 15

Preliminaries

Before studying CTL model checking, need to understand:

• State transition systems.

• Kripke structures.

• Computation paths and computation trees.

• The CTL formalism.

• How to translate informal specifications into CTL.

• CTL formula equivalencies (to simplify model checker).

COMP 5404 Winter 2003 16

States

• Program state: program counter + variable values + heap.

• Heap: ignore.

• Program counter: low-level detail, language dependent. Use
graphical representation: different nodes are different states.

• Example:
x:=0; y:=0;
for i:=1 to 3 do
(x:=x+1; y:=y+1)

If “steps” are assignments, has 8 steps, and 9 states: the
initial state and the state after each step.

COMP 5404 Winter 2003 17

State transition diagrams

x:=0; y:=0;
for i:=1 to 3 do
(x:=x+1; y:=y+1)

x=?
y=?

x=0
y=?

x=0
y=0

x=1
y=0

x=1
y=1

x=2
y=1

x=2
y=2

x=3
y=2

x=3
y=3

What if we added a new final line (x:=0; y:=0)?

COMP 5404 Winter 2003 18

Non-terminating programs

• In examples of interest, programs will be effectively non-
terminating.

• E.g.

– circuits run indefinitely

– protocols run repeatedly (and simultaneously)

– avionics software should keep running until the aircraft is
switched off

• Termination is uninteresting: we are interested in what
happens while the program is executing.

• Trivial to handle in state transition diagrams.

COMP 5404 Winter 2003 19

A non-terminating state-transition system

x:=0; y:=0;
L: for i:=1 to 3 do

(x:=x+1; y:=y+1);
x:=0; y:=0; go to L

x=?
y=?

x=0
y=?

x=0
y=0

x=1
y=0

x=1
y=1

x=2
y=1

x=2
y=2

x=3
y=2

x=3
y=3

x=0
y=3

COMP 5404 Winter 2003 20

A trivial kind of model checking

• Suppose the specification is that some boolean expression e
is true at each state (i.e. e is an invariant).

• E.g. x=y in the previous example is true at every state.

• Can check by running the program and evaluating e after
each step.

• What about properties that aren’ t an invariant, e.g.

– “ there is a state where x=2” ?

– “ infinitely often there are states where x=2”

– “every state where y=0 is followed by a state where
y=1”

• What about concurrency and non-determinism?

COMP 5404 Winter 2003 21

Finite state systems

• If variables can only take on finitely many values (e.g.
x:[1..10], y:bool), then the program is finite state (there are
only finitely many program counter values).

• It suffices to restrict variables to boolean values.

• E.g. x:[0..7] can be represented by 3 boolean variables
using a binary digit representation.

• x=3 corresponds to
x1=0 and x2=1 and x3=1.

• From now on, restrict attention to programs with boolean
variables only.

COMP 5404 Winter 2003 22

Mutex: an example with concurrency

• Mutual exclusion: each process has a critical section: no
two processes can be in their critical sections at the same
time.

• Don’ t care what’s in each critical section.
• Use “status” variables to track sections. Values n, t and c.

• First process:
while 1 do
(<non-cs-1>; st1:=t;
when st2=n or st2=t do st1:=c;
<cs-1>;
st1:=n)

COMP 5404 Winter 2003 23

Mutex example, continued

• Second process:
while 1 do
(<non-cs-2>; st2:=t;
when st1=n or st1=t do st2:=c;
<cs-2>;
st2:=n)

• Run processes concurrently, initially st1=st2=n.

• Boolean variables: n1, n2, c1, c2, t1, t2 represent
st1, st2, e.g. st1=t represented by n1=0, t1=1,
c1=0.

• In diagram, label only with variables with value 1.

COMP 5404 Winter 2003 24

State transition diagram for mutex

n1
n2

n1
t2

t1
c2

t1
t2

n1
c2

t1
n2

c1
t1

c1
n2

COMP 5404 Winter 2003 25

Kripke structures

Definition. Let AP be a set of boolean variables. A Kripke
Structure over AP is a triple M=(S,R,L) where

• S is a finite set (of states)

• R ⊆ S×S such that for all states s, there is a state s’ such
that (s,s’) ∈ R. (R is the transition relation.)

• L ∈ S→ AP (L is the labell ing function)

Write s → s’ for (s,s’) ∈ R.
Sometimes a Kripke structure wil l have some initial states.

Can translate mutex example to a Kripke structure.

COMP 5404 Winter 2003 26

n1
n2

n1
t2

t1
c2

t1
t2

n1
c2

t1
n2

c1
t1

c1
n2

s0

s1

s2

s4

s3

s5

s7

s6

S = {s0, s1, s2, s3, s4, s5, s6, s7} initial states: S0 = {s0}
R = { (s0, s1), (s0, s5), (s1, s2), (s1, s3), (s2, s0), ...}
L(s0)={n1,n2}, L(s1)={t1,n2}, L(s2)={c1,n2}, ...

COMP 5404 Winter 2003 27

Paths in a Kripke structure

Definition. A path in a Kripke structure is an infinite
sequence π = π1, π2, π3, ... where for all i ≥ 1, πι → πι+1.

In the example, there is a path

s0 → s5 → s6 → s0 → s5 → s6 → s0 → ...

A path π starts at a state s if π1=s.

It’s also useful, though not formally necessary, to think about

computation trees.

COMP 5404 Winter 2003 28

Computation trees (via unwinding)

s0

s2 s1

s0

s2

s2

s2

s1

s1

s0

s2 s1
s0s1

L(s0)={p}, L(s1)={r,p}, L(s0)={q,r}

COMP 5404 Winter 2003 29

Informal mutex properties

Safety: always have ¬(c1∧c2).

Liveness: whenever t1, eventually c1. (Similarly for
process 2)

Non-blocking: It’s always true that process 1 can always
progress to a state where t1.

No strict sequencing: The protocol is not a trivial one that
forces strict alternation (c1 c2 c1 c2 c1 ...).

COMP 5404 Winter 2003 30

CTL

• All the mutex properties can be expressed in CTL.

• CTL formulas are properties of states.

• Formula builders: AF, EF, AG, EG, AX, EX, AU, EU, and
boolean connectives.

• “A” = on all paths starting at the given state

• “E” = there exists a path starting at the given state

• “X” = in the next state on the path

• “G” = on all states in the path (i.e. Globally)

• “F” = on some state in the path (i.e. in the Future)

• “U” = first formula holds until some point where the second
formula starts holding.

COMP 5404 Winter 2003 31

CTL continued

• CTL is a formal language: precise syntax and semantics.

• There is a linear-time algorithm for model checking CTL:

– Input: Kripke structure and a CTL formula

– Output: yes/no, answering the question does the K.S.
satisfy the formula?

• First algorithm based on explicit analysis of states.

• Later improvement (enormous!) groups states into sets
represented by BDD’s (“binary decision diagrams”).

COMP 5404 Winter 2003 32

Syntax of CTL

A CTL formula ϕ has one of the following forms:

• 0, 1, p, ¬ ϕ, ϕ ∧ ϕ, ϕ ⇒ ϕ, ϕ ∨ ϕ (for any variable p in AP)
• AX ϕ , EXϕ
• AGϕ , EGϕ
• AF ϕ , EF ϕ
• A[ϕ Uϕ], E[ϕ Uϕ]

Note AU, EUweird syntax.

COMP 5404 Winter 2003 33

CTL semantics

Definition. A Kripke structure M satisfies a CTL formula ϕ if
M,s |= ϕ , where M,s |= ϕ is defined by induction on the
size of ϕ.

[Details omitted – see text page 157.]

COMP 5404 Winter 2003 34

CTL examples: mutex specification

Safety: AG ¬(c1∧c2).

Liveness: AG (t1 ⇒ AF c1).

Non-blocking: AG (n1 ⇒ EX t1).

No strict sequencing:

EF (c1 ∧ E[c1 U (¬c1 ∧ E[¬c2 U c1])]).

COMP 5404 Winter 2003 35

Some generic CTL examples

1. ¬ EF (Start ∧ ¬Ready)
2. AG (AF ServiceAvailable)

3. AG (EF Restart)

4. AG (Request ⇒ AF Acknowledgment)

COMP 5404 Winter 2003 36

Fixing mutex

• Add a new variable turn (initially 1).
• First process:
while 1 do
(<non-cs-1>; st1:=t;
when st2=n or (st2=t and turn=1)
do st1:=c;

<cs-1>;
st1:=n)

• Second process:
while 1 do
(<non-cs-2>; st2:=t;
when st1=n or (st1=t and turn=2)
do st2:=c;

<cs-2>;
st2:=n)

COMP 5404 Winter 2003 37

New Kripke structure

• Note: we can choose the variable set AP it’ s over. Leave it
the same – this means the new variable turn is ignored.

n1
n2

n1
t2

t1
c2

t1
t2

n1
c2

t1
n2

c1
t1

c1
n2

t1
t2

COMP 5404 Winter 2003 38

Model-checking algorithm simplification

• Only need to consider operators 0, ¬, ∧, AF, EU, EX.

• The rest are equivalent via ≡: ϕ ≡ ψ iff the two formulas
satisfy the same K.S.’s in the same states.

• 1 ≡ ¬0

• ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ)
• AX ϕ ≡ ¬EX(¬ϕ)

• EG ϕ ≡ ¬AF(¬ϕ)

• EF ϕ ≡ E[1 U ψ]

COMP 5404 Winter 2003 39

Simplification continued

• AG ϕ ≡ ¬EF(¬ϕ)

• A[ϕ U ψ] ≡ ¬(E[¬ψ U ¬ϕ∧¬ψ] ∨ EG ¬ψ)

COMP 5404 Winter 2003 40

The CTL model checking algorithm

• Input: Kripke structure M and CTL formula ϕ.

• Output: set of states where ϕ holds. (Can derive the desired
yes/no answer.)

• Idea: label graph with subformulae known to be true,
starting with smallest.

• Basically a fairly simple graph algorithm.

COMP 5404 Winter 2003 41

Algorithm top-level

mc(ϕ0 ,M):

1. Translate ϕ0 so it mentions only 0, ¬, ∧, AF, EU,
EX, and variables.

2. For each state s of M, initialize T(s) to be the empty set.
T(s) is the set of subformulae of ϕ known to be true.

3. Let l be a list of all subformulae of ϕ0, sorted in
nondecreasing order of size.

4. For each ϕ in l, call the procedure add(ϕ).

5. Return the set of all s such that ϕ0 ∈ T(s).

COMP 5404 Winter 2003 42

Definition of add(ϕ) by pattern matching

• add(p) where p is variable: if p ∈ L(s) then add p to T(s).

• add(¬ψ) : for each s ∈ S, if ψ ∉ T(s), then add ϕ to T(s).

• add(ϕ∧ψ) : for each s ∈ S, if ϕ ∈ T(s) and ψ ∈ T(s) then
add ϕ to T(s).

• add(EXψ) : for each s ∈ S and for each s’ ∈ S such that
s→s’ , if ψ ∈ T(s) then add ϕ to T(s).

COMP 5404 Winter 2003 43

Definition of add(ϕ), continued

• add(AFψ) : for each s ∈ S, if ψ ∈ T(s) then add ϕ to T(s).
Now repeat the following step until no T(s) is changed: if
there is a state s such that ϕ ∈ T(s’) whenever s→s’ , then
add ϕ to T(s).

• add(E[γ Uψ]) : for each s ∈ S, if ψ ∈ T(s) then add ϕ to
T(s). Now repeat the following step until no T(s) is
changed: if there is a state s such that γ ∈ T(s) and for some
s’ , s→s’ and ϕ ∈ T(s’), then add ϕ to T(s).

COMP 5404 Winter 2003 44

Complexity

• |M| is the number of states plus the number of transitions.

• |ϕ0| is the number of subformulae of ϕ0.

• Complexity is O(f(|M|, |ϕ0|)) – what is f?
• add, in AF and EUcases, has triply-nested loops over

states.

• So far, looks like f(x,y)=x3y.

• However, other cases are fine, f(x,y)=x3y, and we can
optimize the two bad cases.

COMP 5404 Winter 2003 45

Optimizing EU

• View as graph problem.

• Looking for all s where there is a finite path starting at s,
with γ “ true” along the way, ending at an s’ where ψ true.

• Consider such paths in reverse:

– reverse all edges in graph

– for each node s’ where ψ ∈ T(s’), run a depth-first search
starting with s’ , only visiting nodes s where γ ∈ T(s).

– for each visited node s, add ϕ to T(s).

• Linear in number of edges of the graph + the number of
nodes.

COMP 5404 Winter 2003 46

Optimizing AF

• Not so easy.

• Note that AFψ ≡ ¬EG¬ψ, so it suff ices to process EG case
eff iciently.

• Background: a strongly connected component in a directed
graph is a maximal set of nodes C such that any two nodes
in C are connected by a path using only nodes from C, and
if C has only one node, then there is an edge from the node
to itself.

• Linear in size of graph.

COMP 5404 Winter 2003 47

Optimizing add(AFψ): add(EGψ)

• View as graph problem.

• Remove all nodes s where ψ ∉ T(s), call resulting graph G.

• Find strongly-connected components C1, ..., Ck of G.

• For each node s in one of the Ci, run a depth-first search in
the reverse graph of G, starting at s.

• For each visited node s, add ϕ to T(s).

COMP 5404 Winter 2003 48

Example

• Run algorithm on AG AF(c1 ∨ c2)and mutex example.

• “Simplifies” to
¬E[¬0 U ¬AF¬(¬c1∧¬c2)]

• Simulate execution by labelling graph with members of
T(s).

COMP 5404 Winter 2003 49

Example continued

n1
n2

n1
t2

t1
c2

t1
t2

n1
c2

t1
n2

c1
t1

c1
n2

s0

s1

s2

s4

s3

s5

s7

s6

COMP 5404 Winter 2003 50

Summary

• Defined Kripke structures, modeling finite-state systems.

• Defined CTL, a formalism for specifying properties of
Kripke structures.

• Gave graph-based algorithm for deciding at which states of
a K.S. M a given CTL formula ϕ holds.

• Complexity of algorithm: O(| ϕ | × |M|).

