COMP 5404 Computer Aided Verification

- Instructor: Doug Howe, HP5360, howe@scs.carleton.ca
- **Prerequisite:** general CS background. See instructor if in doubt.
- **Text:** Logic in Computer Science: Modeling and Reasoning about Systems, Huth and Ryan.
- **Grading:** 60% assignments (4 or 5), 40% final exam. Final exam will be held during the last lecture.
- Office Hours: Mondays 10-12.

Course theme

Software verification using formal methods.

Testing

- Edsgar Dijkstra (Turing Award winner): "Testing can never show the absence of bugs, only their presence."
- Testing can increase confidence in a program, but not enough for critical applications:
 - Nuclear reactors
 - Avionics
 - Medicine
 - Finance
 - Circuits
 - Network protocol correctness and security.
- There have been some extremely costly disasters (Intel, Ariane...)

A "hi-tech" solution

Devise tools that verify, with 100% certainty, that a program satisfies some specification of correctness.

Tool input: program + specification.

Tool output: Yes/no. If "no", may also output error trace.

Form of tool input?

- Tool inputs must be precise.
- Both inputs are expressions in some language:
 - 1. a programming language
 - 2. a specification language.
- Programming languages are precise:
 - syntax: what expressions are acceptable
 - specified by grammar or parser.
 - semantics: what do the expressions mean
 - specified by manual or compiler.

Formal languages

- A *formal language* is a language with a mathematically precise syntax and semantics.
- All programming languages are formal languages.
- English (French, Chinese, etc) is not a formal language.
- Mathematics is not a formal language! (It uses English.)
- To make specifications acceptable for tool input, write them in a *formal specification language*.

COMP 5404 Winter 2003 6

Formal verification tools

Input: program + formal specification*

Output: yes/no (+ possibly an error trace)

(*) A specification in a formal language.

Unique property of formal verification

Since the inputs are have precise mathematical meaning, the question

Does the program meet the specification?

has a precise answer (as opposed to testing, which answers *maybe*). The tool gives the answer.

Note: there may be bugs in the tool itself, the compiler used to compile the tool, the operating system running the tool, the hardware running the operating system.

Formal specification languages: example

ZFC (Zermelo-Fraenkel set theory with Choice)

- Sufficient for most mathematics.
- Based on predicate calculus.
- Examples:
 - $\forall x \exists y \ x \in y$
 - $\forall x \forall y \exists z \forall w \ w \in z \iff (w \in x \land w \in y)$
 - $\forall n \ 3 \le n \Rightarrow \neg (\exists x \exists y \exists z \ x \ne 0 \land y \ne 0 \land z \ne 0 \land x^n + y^n = z^n)$
- ZFC syntax: expression built using above symbols (etc).
- ZFC semantics: "first-order structures".

Formal tool built on ZFC

Input: program + ZFC specification

Output: yes/no

- Big problem: we can mathematically prove that there is no algorithm for this!
- Solution 1: request user input if needed.
- Solution 2: restrict the inputs.

Solution 1: deductive methods

- Require the user to construct a formal *proof* that the program meets the specification.
- Tool provides support:
 - automatic proof of "easy" facts such as
 - basic arithmetic
 - basic theories of data structures (lists, arrays etc)
 - type checking
 - proof by analogy
 - lemma database
- General, but can require a great deal of direction by user.

Solution 2: algorithmic

- Find suitable input languages (programming, specification) for which there are efficient algorithms.
- User involvement:
 - produce the inputs
 - set some parameters in the tool for efficiency
- "Push-button" technology.
- Emphasis on finding error traces in case of "no" answer.
 - A simple "no" is not so useful in practice.
- Typical algorithm is a *model checker:* check that spec holds in a model of the program.

Caveat

- Many of the best approaches to Solution 2 are restricted to *finite state systems*.
- Many interesting systems are finite state (e.g. digital circuits).
- Also, many infinite-state systems can be viewed as finite state by *abstracting away* from irrelevant details. E.g.
 - in network protocols, can ignore packet payload
 - in security protocols, can ignore encryption and message details
 - in avionics, can ignore sensor details.

First main topic: CTL model checking

- CTL = "Computation Tree Logic", a spec language.
- There are many possible programming languages. We'll use a particular model they can all compile into.

CTL model checker input:

"Kripke structure" model of program

+

CTL specification

Output: yes/no, + if no, then error trace (in many cases)

Preliminaries

Before studying CTL model checking, need to understand:

- State transition systems.
- Kripke structures.
- Computation paths and computation trees.
- The CTL formalism.
- How to translate informal specifications into CTL.
- CTL formula equivalencies (to simplify model checker).

States

- Program state: program counter + variable values + heap.
- Heap: ignore.
- Program counter: low-level detail, language dependent. Use graphical representation: different nodes are different states.
- Example:

```
x:=0; y:=0;
for i:=1 to 3 do
(x:=x+1; y:=y+1)
```

If "steps" are assignments, has 8 steps, and 9 states: the initial state and the state after each step.

State transition diagrams

$$x := 0; y := 0;$$
for i:=1 to 3 do
$$(x := x+1; y := y+1)$$

$$\downarrow$$

$$x = 0$$

$$y = 0$$

$$x = 1$$

$$y = 0$$

$$y = 0$$

$$x = 1$$

$$y = 0$$

$$y = 0$$

$$x = 1$$

$$y = 0$$

$$x = 1$$

$$y = 0$$

$$y = 0$$

$$x = 1$$

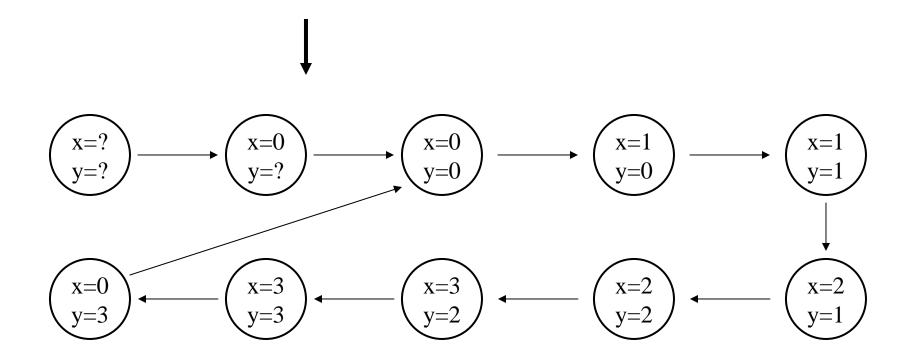
$$y = 0$$

What if we added a new final line (x := 0; y := 0)?

Non-terminating programs

- In examples of interest, programs will be effectively *non-terminating*.
- E.g.
 - circuits run indefinitely
 - protocols run repeatedly (and simultaneously)
 - avionics software should keep running until the aircraft is switched off
- Termination is uninteresting: we are interested in what happens while the program is executing.
- Trivial to handle in state transition diagrams.

A non-terminating state-transition system



A trivial kind of model checking

- Suppose the specification is that some boolean expression *e* is true at each state (i.e. *e* is an *invariant*).
- E.g. x=y in the previous example is true at every state.
- Can check by running the program and evaluating *e* after each step.
- What about properties that aren't an invariant, e.g.
 - "there is a state where x=2"?
 - "infinitely often there are states where x=2"
 - "every state where y=0 is followed by a state where y=1"
- What about concurrency and non-determinism?

Finite state systems

- If variables can only take on finitely many values (e.g. x:[1..10], y:bool), then the program is finite state (there are only finitely many program counter values).
- It suffices to restrict variables to boolean values.
- E.g. x:[0..7] can be represented by 3 boolean variables using a binary digit representation.
- x=3 corresponds to $x_1=0$ and $x_2=1$ and $x_3=1$.
- From now on, restrict attention to programs with boolean variables only.

Mutex: an example with concurrency

- Mutual exclusion: each process has a *critical section*: no two processes can be in their critical sections at the same time.
- Don't care what's in each critical section.
- Use "status" variables to track sections. Values n, t and c.
- First process:

```
while 1 do
(<non-cs-1>; st1:=t;
when st2=n or st2=t do st1:=c;
<cs-1>;
st1:=n)
```

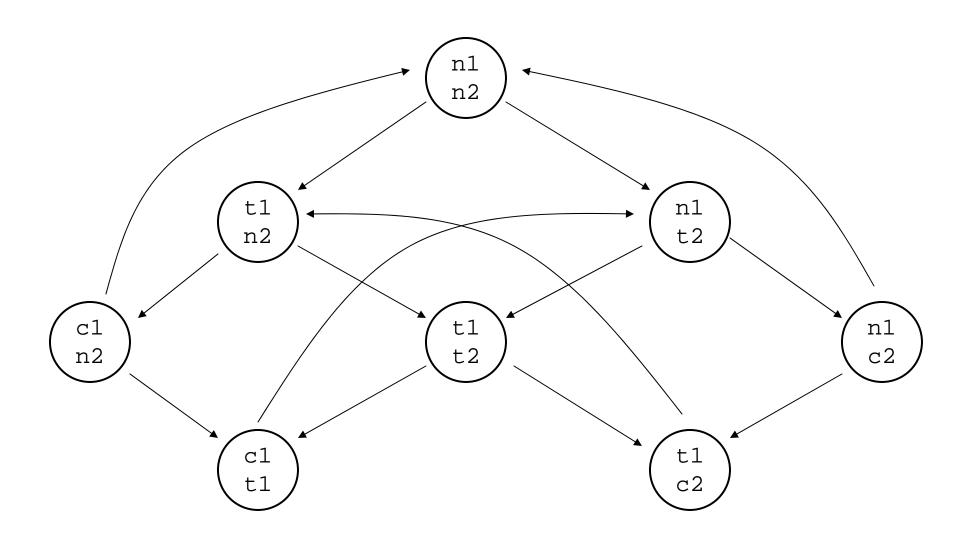
Mutex example, continued

• Second process:

```
while 1 do
(<non-cs-2>; st2:=t;
when st1=n or st1=t do st2:=c;
<cs-2>;
st2:=n)
```

- Run processes concurrently, initially st1=st2=n.
- Boolean variables: n1, n2, c1, c2, t1, t2 represent st1, st2, e.g. st1=t represented by n1=0, t1=1, c1=0.
- In diagram, label only with variables with value 1.

State transition diagram for mutex



COMP 5404 Winter 2003 24

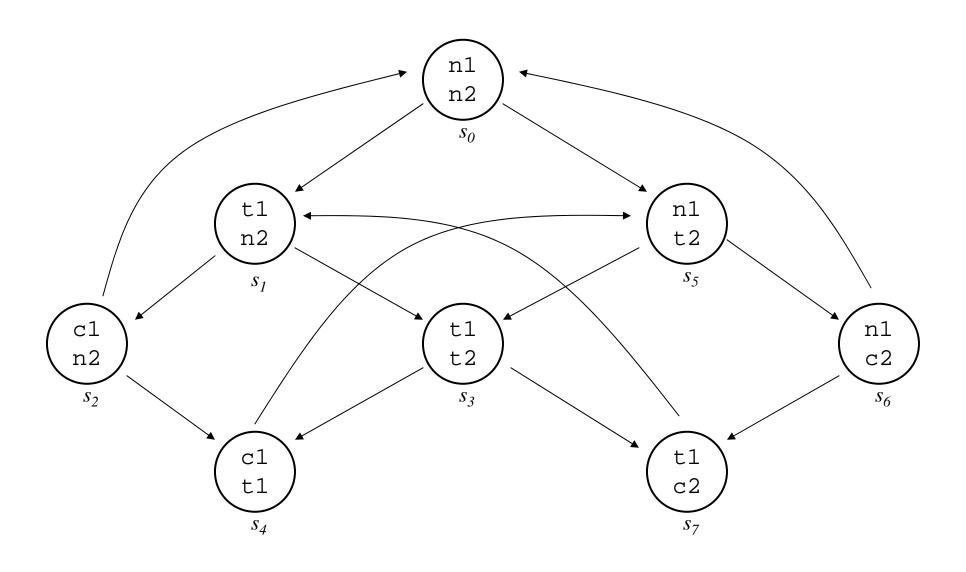
Kripke structures

Definition. Let AP be a set of boolean variables. A Kripke Structure over AP is a triple M=(S,R,L) where

- S is a finite set (of states)
- $R \subseteq S \times S$ such that for all states s, there is a state s' such that $(s,s') \in R$. (R is the *transition relation*.)
- $L \in S \rightarrow AP$ (L is the labelling function)

Write $s \rightarrow s'$ for $(s,s') \in R$. Sometimes a Kripke structure will have some *initial states*.

Can translate mutex example to a Kripke structure.



$$S = \{s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7\}$$
 initial states: $S_0 = \{s_0\}$
 $R = \{(s_0, s_1), (s_0, s_5), (s_1, s_2), (s_1, s_3), (s_2, s_0), ...\}$
 $L(s_0) = \{n1, n2\}, L(s_1) = \{t1, n2\}, L(s_2) = \{c1, n2\}, ...$

Paths in a Kripke structure

Definition. A *path* in a Kripke structure is an infinite sequence $\pi = \pi_1$, π_2 , π_3 , ... where for all $i \ge 1$, $\pi_1 \to \pi_{1+1}$.

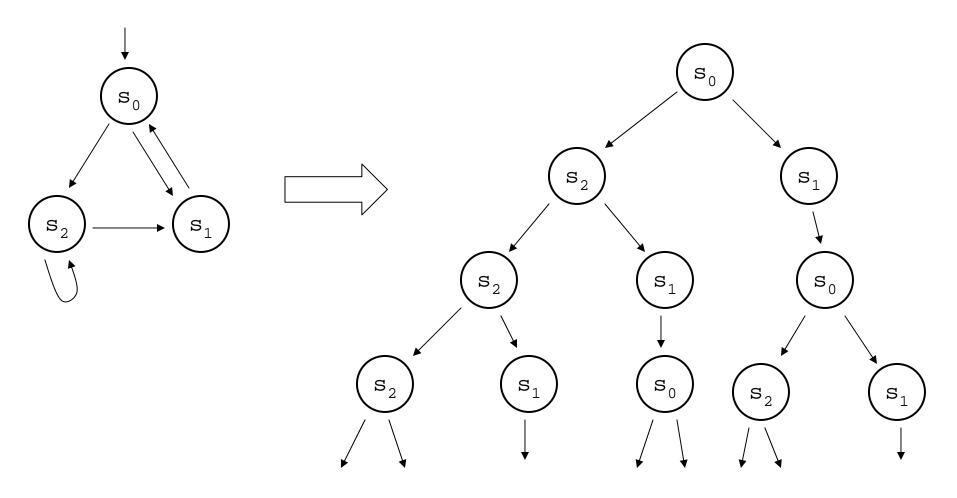
In the example, there is a path

$$s_0 \rightarrow s_5 \rightarrow s_6 \rightarrow s_0 \rightarrow s_5 \rightarrow s_6 \rightarrow s_0 \rightarrow \dots$$

A path π starts at a state s if $\pi_1 = s$.

It's also useful, though not formally necessary, to think about computation *trees*.

Computation trees (via unwinding)



$$L(s_0)=\{p\}, L(s_1)=\{r,p\}, L(s_0)=\{q,r\}$$

Informal mutex properties

Safety: always have $\neg(c1 \land c2)$.

Liveness: whenever t1, eventually c1. (Similarly for process 2)

Non-blocking: It's always true that process 1 can always progress to a state where t1.

No strict sequencing: The protocol is not a trivial one that forces strict alternation (c1 c2 c1 c2 c1 ...).

<u>CTL</u>

- All the mutex properties can be expressed in CTL.
- CTL formulas are properties of *states*.
- Formula builders: AF, EF, AG, EG, AX, EX, AU, EU, and boolean connectives.
- "A" = on all paths starting at the given state
- "E" = there exists a path starting at the given state
- "X" = in the next state on the path
- "G" = on all states in the path (i.e. Globally)
- "F" = on some state in the path (i.e. in the <u>Future</u>)
- "U" = first formula holds until some point where the second formula starts holding.

CTL continued

- CTL is a formal language: precise syntax and semantics.
- There is a linear-time algorithm for model checking CTL:
 - Input: Kripke structure and a CTL formula
 - Output: yes/no, answering the question *does the K.S.* satisfy the formula?
- First algorithm based on explicit analysis of states.
- Later improvement (enormous!) groups states into sets represented by BDD's ("binary decision diagrams").

Syntax of CTL

A CTL formula φ has one of the following forms:

- 0, 1, p, $\neg \varphi$, $\varphi \land \varphi$, $\varphi \Rightarrow \varphi$, $\varphi \lor \varphi$ (for any variable p in AP)
- AX ϕ , EX ϕ
- AG ϕ , EG ϕ
- AF ϕ , EF ϕ
- $A[\phi U \phi], E[\phi U \phi]$

Note AU, EU weird syntax.

CTL semantics

Definition. A Kripke structure M satisfies a CTL formula φ if $M,s /= \varphi$, where $M,s /= \varphi$ is defined by induction on the size of φ .

[Details omitted – see text page 157.]

COMP 5404 Winter 2003 33

CTL examples: mutex specification

Safety: AG \neg (c1 \land c2).

Liveness: AG (t1 \Rightarrow AF c1).

Non-blocking: AG (n1 \Rightarrow EX t1).

No strict sequencing:

EF (c1 \wedge E[c1 U (\neg c1 \wedge E[\neg c2 U c1])]).

Some generic CTL examples

¬ EF (Start ∧ ¬Ready)
 AG (AF ServiceAvailable)
 AG (EF Restart)
 AG (Request ⇒ AF Acknowledgment)

COMP 5404 Winter 2003 35

Fixing mutex

- Add a new variable turn (initially 1).
- First process:

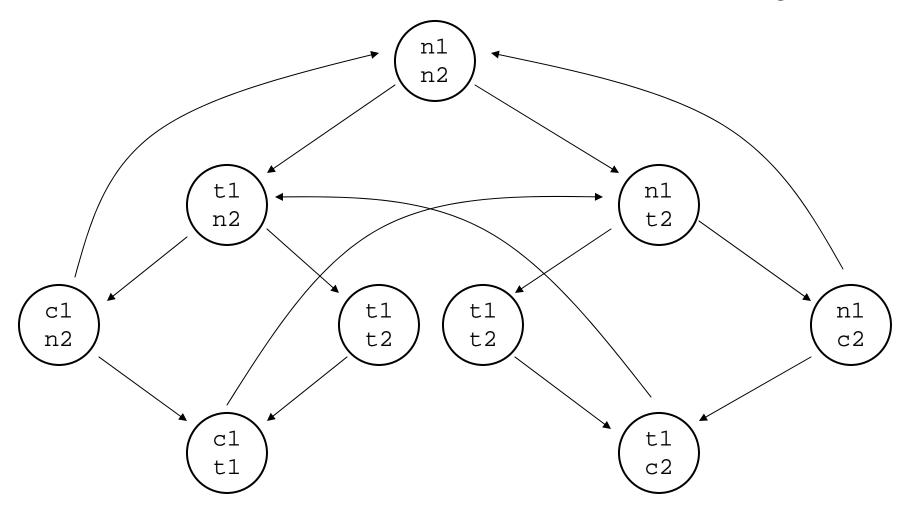
```
while 1 do
(<non-cs-1>; st1:=t;
when st2=n or (st2=t and turn=1)
   do st1:=c;
<cs-1>;
st1:=n)
```

• Second process:

```
while 1 do
(<non-cs-2>; st2:=t;
when st1=n or (st1=t and turn=2)
    do st2:=c;
<cs-2>;
st2:=n)
```

New Kripke structure

• **Note:** we can choose the variable set *AP* it's over. Leave it the same – this means the new variable turn is ignored.



Model-checking algorithm simplification

- Only need to consider operators $0, \neg, \land$, AF, EU, EX.
- The rest are equivalent via \equiv : $\phi \equiv \psi$ iff the two formulas satisfy the same K.S.'s in the same states.
- 1 ≡ ¬0
- $\phi \lor \psi \equiv \neg(\neg\phi \land \neg\psi)$
- AX $\phi \equiv \neg EX(\neg \phi)$
- EG $\phi \equiv \neg AF(\neg \phi)$
- EF $\phi = E[1 \cup \psi]$

Simplification continued

• AG $\phi = \neg EF(\neg \phi)$

• A[
$$\phi$$
 U ψ] $\equiv \neg$ (E[$\neg\psi$ U $\neg\phi\land\neg\psi$] \vee EG $\neg\psi$)

The CTL model checking algorithm

- Input: Kripke structure M and CTL formula φ.
- Output: set of states where φ holds. (Can derive the desired yes/no answer.)
- Idea: label graph with subformulae known to be true, starting with smallest.
- Basically a fairly simple graph algorithm.

Algorithm top-level

```
mc(\phi_0, M):
```

- 1. Translate φ_0 so it mentions only $0, \neg$, \land , AF, EU, EX, and variables.
- 2. For each state s of M, initialize T(s) to be the empty set. T(s) is the set of subformulae of φ known to be true.
- 3. Let l be a list of all subformulae of φ_0 , sorted in nondecreasing order of size.
- 4. For each φ in l, call the procedure $add(\varphi)$.
- 5. Return the set of all s such that $\varphi_0 \in T(s)$.

Definition of add (ϕ) by pattern matching

- add (p) where p is variable: if $p \in L(s)$ then add p to T(s).
- add $(\neg \psi)$: for each $s \in S$, if $\psi \notin T(s)$, then add φ to T(s).
- add $(\phi \land \psi)$: for each $s \in S$, if $\phi \in T(s)$ and $\psi \in T(s)$ then add ϕ to T(s).
- add (EX ψ): for each $s \in S$ and for each $s' \in S$ such that $s \rightarrow s'$, if $\psi \in T(s)$ then add φ to T(s).

Definition of add (ϕ) , continued

• add (AF ψ): for each $s \in S$, if $\psi \in T(s)$ then add φ to T(s). Now repeat the following step until no T(s) is changed: if there is a state s such that $\varphi \in T(s')$ whenever $s \rightarrow s'$, then add φ to T(s).

• add ($E[\gamma \cup \psi]$): for each $s \in S$, if $\psi \in T(s)$ then add φ to T(s). Now repeat the following step until no T(s) is changed: if there is a state s such that $\gamma \in T(s)$ and for some s', $s \rightarrow s'$ and $\varphi \in T(s')$, then add φ to T(s).

Complexity

- |M| is the number of states plus the number of transitions.
- $|\phi_0|$ is the number of subformulae of ϕ_0 .
- Complexity is $O(f(/M|, |\varphi_0|))$ what is f?
- add, in AF and EU cases, has triply-nested loops over states.
- So far, looks like $f(x,y)=x^3y$.
- However, other cases are fine, $f(x,y)=x^3y$, and we can optimize the two bad cases.

Optimizing EU

- View as graph problem.
- Looking for all s where there is a finite path starting at s, with γ "true" along the way, ending at an s' where ψ true.
- Consider such paths in reverse:
 - reverse all edges in graph
 - for each node s' where $\psi \in T(s')$, run a depth-first search starting with s', only visiting nodes s where $\gamma \in T(s)$.
 - for each visited node s, add φ to T(s).
- Linear in number of edges of the graph + the number of nodes.

Optimizing AF

- Not so easy.
- Note that $AF\psi = \neg EG\neg \psi$, so it suffices to process EG case efficiently.
- Background: a *strongly connected component* in a directed graph is a maximal set of nodes *C* such that any two nodes in *C* are connected by a path using only nodes from *C*, and if *C* has only one node, then there is an edge from the node to itself.
- Linear in size of graph.

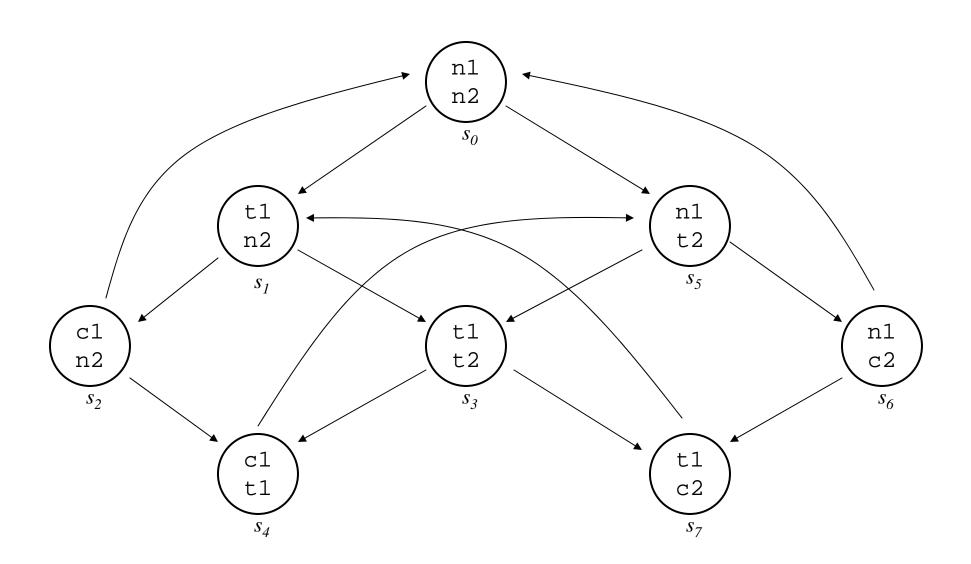
Optimizing add (AF ψ): add (EG ψ)

- View as graph problem.
- Remove all nodes s where $\psi \notin T(s)$, call resulting graph G.
- Find strongly-connected components C_1 , ..., C_k of G.
- For each node s in one of the C_i , run a depth-first search in the reverse graph of G, starting at s.
- For each visited node s, add φ to T(s).

Example

- Run algorithm on AG AF ($c1 \lor c2$) and mutex example.
- "Simplifies" to $\neg E[\neg 0 \ U \ \neg AF \neg (\neg c1 \land \neg c2)]$
- Simulate execution by labelling graph with members of T(s).

Example continued



Summary

- Defined Kripke structures, modeling finite-state systems.
- Defined CTL, a formalism for specifying properties of Kripke structures.
- Gave graph-based algorithm for deciding at which states of a K.S. *M* a given CTL formula φ holds.
- Complexity of algorithm: $O(|\phi| \times |M|)$.