
System Validation
Lecture 5: Computation Tree Logic

Joost-Pieter Katoen

Formal Methods and Tools Group

E-mail: katoen@cs.utwente.nl

URL: fmt.cs.utwente.nl/courses/systemvalidation/

January 24, 2003

System Validation – Computation Tree Logic

CTL Formal Methods and Tools

Overview of lecture
� Introduction

� Computation tree logic

– Syntax and semantics
– Some formulas express the same

� Model-checking CTL

� Fairness

� The difference between PLTL and CTL

� Practical use of CTL

System Validation – Computation Tree Logic 1

CTL Formal Methods and Tools

Linear and branching temporal logic

� Linear temporal logic:

“statements about (all) paths starting in a state”

– � ��� � ��� � 	
 � iff for all possible paths starting in � always� � 	

� Branching temporal logic:

“statements about all or some paths starting in a state”

– � ��� � � ��� � 	
 � iff for all paths starting in � always� � 	

– � ��� � ��� � 	
 � iff for some path starting in � always� � 	

System Validation – Computation Tree Logic 2

CTL Formal Methods and Tools

Why branching temporal logic?

� Expressiveness of linear and most branching temporal logics is
incomparable:

– there are properties that can be expressed in linear, but not in most
branching TL

– there are properties that can be expressed in most branching, but
not in linear TL

� The model-checking algorithms are different, and so are their time
and space complexities

model checking was originally developed for a branching temporal logic
[Emerson & Clarke 1981]

System Validation – Computation Tree Logic 3

CTL Formal Methods and Tools

Branching temporal logics
There are various branching temporal logics:

� Hennessy-Milner logic

� Computation Tree Logic (CTL)

� Extended Computation Tree Logic (CTL �)

– combines PLTL and CTL into a single framework

� Alternation-free modal � -calculus

� Modal � -calculus

� Propositional dynamic logic

System Validation – Computation Tree Logic 4

CTL Formal Methods and Tools

Overview of lecture
� Introduction

� Computation tree logic

– Syntax and semantics
– Some formulas express the same

� Model-checking CTL

� Fairness

� The difference between PLTL and CTL

� Practical use of CTL

System Validation – Computation Tree Logic 5

CTL Formal Methods and Tools

Propositional linear temporal logic

Is the smallest set of formulas generated by the rules:

1. each atomic proposition � is a formula

2. if � and � are formulas, then � � and � � � are formulas

3. if � and � are formulas, then � � (“next”) and � � � (“until”) are
formulas.

derived operators � (always) and � (eventually)

how to specify that for every computation it is
always possible to return to the initial state? � � start?

System Validation – Computation Tree Logic 6

CTL Formal Methods and Tools

Propositional branching temporal logic

� Extend PLTL with path quantifiers:

– � , where � � denotes that � holds over all paths
– , where � denotes that there exists some path satisfying �

� � � and � are called state-formulas

� PLTL-formula � is called a path-formula

how to specify that for every computation it is
always possible to return to the initial state? � � � � start!

System Validation – Computation Tree Logic 7

CTL Formal Methods and Tools

Computation tree logic

CTL is the smallest set of formulas generated by the rules:

1. State-formulas:

(a) each atomic proposition � is a state-formula
(b) if � and � are state-formulas, then � � and � � � are state-

formulas
(c) if � is a path-formula, then � and � � are state-formulas

2. Path-formulas:

(a) if � and � are state-formulas, then � � and � � � are path-
formulas.

� and � are always directly preceded by � or �

System Validation – Computation Tree Logic 8

CTL Formal Methods and Tools

Derived operators
� � � true � �

� � � � � � �

 � � � � true � � � “potentially � ”

� � � � � � � � “invariantly � ”

� � � � � � true � � � “inevitably � ”

 � � � � � � � � “potentially always � ”

the boolean connectives are derived as usual

System Validation – Computation Tree Logic 9

CTL Formal Methods and Tools

Derived operators

�� red

� � red

� � red

� � red

System Validation – Computation Tree Logic 10

CTL Formal Methods and Tools

Some example CTL-formulas

let �� be the set of atomic propositions over variable � , boolean
operators � , � and � , and function� � � for constant �

� the following formulas are legal CTL-formulas over �� :

– � �� � � � 	� � � �� � �	 �
– � � ��� � � 	 � �
 �

– � �� �

 � � 	

 �

– � � �
 � � � �� � �
 � � �
 �

� the following formulas are illegal CTL-formulas over �� :

– � �� � � � 	� � � ��
� � �	 �

– � � ��� � �
 �
 � ��� �
 � �

– ��� � 	

 � � � 	
 �

System Validation – Computation Tree Logic 11

CTL Formal Methods and Tools

Interpretation of CTL

Formal interpretation of CTL-formulas is defined in terms of a Kripke
structure � � ��� ��� ��� ��� 	
� � � where

� � is a countable set of states,

� � � is a set of initial states,

� � �� � is a transition relation with � � � �� ��� ��� � � � � � � �� � � � �

� � 	
� �� ��� � 	��� is an interpretation function on� .

� 	
� � � � � is the set of the atomic propositions that are valid in �
System Validation – Computation Tree Logic 12

CTL Formal Methods and Tools

Example Kripke structure

� � ���

� � ���

� � ���

� � ���

� � � �

up �up � up�up �

down

System Validation – Computation Tree Logic 13

CTL Formal Methods and Tools

Semantics of CTL: state-formulas

Defined by a relation ��� such that

� � � ��� � if and only if formula � holds in state � of structure �

� ��� � iff � � � 	
� � � � �

� ��� � � iff � � � ��� � �

� ��� � � � iff � � ��� � � � � � ��� � �

� ��� � iff � ��� � for some path � that starts in �

� ��� � � iff � ��� � for all paths � that start in �
System Validation – Computation Tree Logic 14

CTL Formal Methods and Tools

Semantics of CTL: path-formulas

A path in � is an infinite sequence of states � � � � � �� � � such that � � � �

and � � � � � � � � � � � for all � �

Define a relation ��� such that

� � � ��� � if and only if path � in model � satisfies formula �

� ��� � � iff � �� � ��� �

� ��� � � � iff ��� � �
� � � � � ��� �
 � �
 � 	 � �� � � 	 � ��� � � �

where � � � � denotes the � � � � � -th state in the path �

System Validation – Computation Tree Logic 15

CTL Formal Methods and Tools

Example of semantics of CTL

� � �

0 1 3

2

� � �

� � � � � � � �

 � �

 � �

� � �

� � �

System Validation – Computation Tree Logic 16

CTL Formal Methods and Tools

Example of semantics of CTL (cont’d)

� � �

0 1 3

2
� � �

� � � � � � � �

� � � � � � � � �

System Validation – Computation Tree Logic 17

CTL Formal Methods and Tools

Some important validities for CTL

PLTL expansion rules: � � � � � � � �
 � � � � � � �

(last lecture) � � � � � � � �

� � � �
 � � �

CTL expansion rules: � � � � � � � � � �
 � � � � � � �

� � � � � � � � � � �
 � � � � � � � � �

 � � � � � � � �

� � � � � � � � � � �

 � � � �
 � � �

� � � � �
 � � � � �
System Validation – Computation Tree Logic 18

CTL Formal Methods and Tools

Specifying properties in CTL

� Triple Modular Redundant system: 3 processors and a single voter

– processors run same program; voter takes a majority vote
– each component (processor and voter) is failure-prone
– there is a single repairman for repairing processors and voter

Proc 1

Proc 2

Proc 3

input output

vote

vote

vote
Voter

� Modelling assumptions:

– if voter failes, whole system goes down
– after repair of voter, system starts “as new”
– state � �� processors � � voters �

System Validation – Computation Tree Logic 19

CTL Formal Methods and Tools

Specifying properties in CTL

up � up �
up �up �

0,1 1,1

2,1

0,0down

3,1

� Possibly, the system never goes
down: � � �� ��

� Inevitably, the system never goes
down: � � � �� � �

� It is always possible to start as
new: � � � � 	 � (not � �
 � �)

� The system only goes down while
being operational:

� � � � 	 � � � 	 � � � �� � � �

System Validation – Computation Tree Logic 20

CTL Formal Methods and Tools

Overview of lecture
� Introduction

� Computation tree logic

– Syntax and semantics
– Some formulas express the same

� Model-checking CTL

� Fairness

� The difference between PLTL and CTL

� Practical use of CTL

System Validation – Computation Tree Logic 21

CTL Formal Methods and Tools

Model checking CTL

� how to check whether state � satisfies � ?

– compute recursively the set � 	� � � � of states that satisfy �

– check whether state � belongs to � 	 � � � �

� recursive computation:

– determine the sub-formulas of �

– start to compute � 	� � � � , for all atomic propositions � in �

– then check the smallest sub-formulas that contain �

– check the formulas that contain these sub-formulas
– and so on....... until formula � is checked

System Validation – Computation Tree Logic 22

CTL Formal Methods and Tools

Model checking CTL

� how to check whether state � satisfies � ?

– compute recursively the set � 	� � � � of states that satisfy �

– check whether state � belongs to � 	 � � � �

� recursive bottom-up computation:

– consider the parse-tree of �

– start to compute � 	� � � � , for all leafs in the tree
– then go one level up in the tree and check the formula of that node
– then go one level up and check the formula of that node
– and so on....... until the root of the tree (i.e., �) is checked

System Validation – Computation Tree Logic 23

CTL Formal Methods and Tools

Model checking CTL: pseudo-algorithm

� � 	 � � � � is the set of states labelled with atomic proposition �

� � 	 � � � � � � is � 	 � � � � � � 	 � � � �

� � 	 � � � � � equals�� � 	 � � � �

� � 	 � � � � � is the set of states that can directly move to � 	 � � � �

� � 	 � � � � � � is the set of states that can directly only move to � 	 � � � �

� � 	 � � � � � � � � is computed iteratively:

– ��� � �� � ��� �

– �
	 = ��� � -states that can directly move to � �

– ��� = ��	 � -states that can directly move to � 	

– � � � � � � � � � until ��� �	 � ��

System Validation – Computation Tree Logic 24

CTL Formal Methods and Tools

Computing �� � ��� �� �� �	
 � �� � � �
System Validation – Computation Tree Logic 25

CTL Formal Methods and Tools

Computing �� � ��� �� �� �	
 � �� � � �

first iteration

System Validation – Computation Tree Logic 26

CTL Formal Methods and Tools

Computing �� � ��� �� �� �	
 � �� � � �

first iteration

second iteration

System Validation – Computation Tree Logic 27

CTL Formal Methods and Tools

Computing �� � ��� �� �� �	
 � �� � � �

first iteration

second iteration

third iteration

System Validation – Computation Tree Logic 28

CTL Formal Methods and Tools

Computing �� � ��� �� �� �	
 � �� � � �

first iteration

second iteration

third iteration

fourth iteration done!

System Validation – Computation Tree Logic 29

CTL Formal Methods and Tools

Overview of model-checking CTL

� Algorithm: bottom-up traversal of the parse tree of the formula

� For until-formulas: a fixed-point computation

� For � -formulas: a more efficient algorithm using detection of
strongly connected components

� Special attention has to be devoted to fairness issues

� Worst case time-complexity is � � � � ��� �
�

�

where � � is the length of and � is the number of states in the system model

� Tools: NUSMV, Cadence SMV, UPPAAL, CADP,� � � � � �
System Validation – Computation Tree Logic 30

CTL Formal Methods and Tools

Overview of lecture
� Introduction

� Computation tree logic

– Syntax and semantics
– Some formulas express the same

� Model-checking CTL

� The difference between PLTL and CTL

� Fairness

� Practical use of CTL

System Validation – Computation Tree Logic 31

CTL Formal Methods and Tools

PLTL versus CTL

� Their expressiveness is incomparable:

– there is no equivalent PLTL-formula for � � � � �

– there is no equivalent CTL-formula for � � � � � � � � � �

� each path reaches a point at which � holds for two consecutive moments

� � � � � � �� � � and � � � � � �� � � � do not express the same

– but there do exist common formulas like � � � � � � and � � �

� Complexity of model checking is different:

– model checking PLTL is PSPACE-complete: � � � 	�
 �� � � ��� ��� ���
�

– model checking CTL is in polynomial time: � � � 	�
 �� � � � ��
� � �

don’t think that CTL model checking is more efficient
as CTL-formulas are sometimes much longer than PLTL-formulas!

System Validation – Computation Tree Logic 32

CTL Formal Methods and Tools

Overview of lecture
� Introduction

� Computation tree logic

– Syntax and semantics
– Some formulas express the same

� Model-checking CTL

� The difference between PLTL and CTL

� Fairness

� Practical use of CTL

System Validation – Computation Tree Logic 33

CTL Formal Methods and Tools

Fairness: modelling concurrency

Consider the parallel execution of two processes: (initially� �
)

process � � while � �� �
 � do� � � � � � � od

process � � � � �� �

� Does this parallel program ever terminate?

� Expected runs: � � � � � � � � � or � � � � � � � � � � � or the like

� But not: � � � � � � � � (no �) or � � � � � � (no �)

� Fairness is modeled by fair scheduling assumptions – described as
temporal logic-formulas – over the processes

System Validation – Computation Tree Logic 34

CTL Formal Methods and Tools

Typical fairness assumptions (in PLTL)

� Unconditional fairness: property running is true infinitely often:

� � � �� � �� �

� Weak fairness: if enabled is eventually continuously true, running
holds infinitely often:

� � � � 	
 �� � � � � � �� � �� �

� Strong fairness: if enabled holds infinitely often, running does so too:

� � � � 	
 �� � � � � � �� � �� �

System Validation – Computation Tree Logic 35

CTL Formal Methods and Tools

Fair versus unfair computations

do we have � � � � �� � � � � � �� � � ?

System Validation – Computation Tree Logic 36

CTL Formal Methods and Tools

Fair versus unfair computations

� no, since there exists an entirely green path!

� but, is this a “fair” path?
� no, as becoming red is possible infinitely often

� how to exclude these unfair computations?

� add a fairness assumption, e.g., � � � � red!

� then � � � � �� � � � � � �� � � is valid as the unfair
computations are ignored

� fairness assumptions rule out “unrealistic” runs

System Validation – Computation Tree Logic 37

CTL Formal Methods and Tools

Overview of lecture
� Introduction

� Computation tree logic

– Syntax and semantics
– Some formulas express the same

� Model-checking CTL

� The difference between PLTL and CTL

� Fairness

� Practical use of CTL

System Validation – Computation Tree Logic 38

CTL Formal Methods and Tools

Practical properties in CTL

� Reachability

– simple reachability � �

– conditional reachability � � � � �

– reachability from any state � � � � � �

� Safety (“something bad never happens”)

– simple safety � � � �

– conditional safety � � � � � � � � � �

� Liveness � � � � � � � � �

� Fairness � � � � � � �

System Validation – Computation Tree Logic 39

CTL Formal Methods and Tools

How to use CTL in practice?

Capture commonly-used types of formulas in specification patterns

� Specification pattern: generalized description of a commonly
occurring requirement on the permissable paths in a model

– parameterizable: only state-formulas to be instantiated
– high-level: no detailed knowledge of TL is required
– formalism-independent: by mappings onto TL at hand

� Scope of a pattern: the extent of the computation over which the
pattern must hold, such as

– global: the entire computation
– after: the computation after a given state
– between: any part of the computation from one state to another

System Validation – Computation Tree Logic 40

CTL Formal Methods and Tools

Most commonly used specification patterns for CTL

Investigation of 555 requirement specifications reveals that the following
patterns are most widely used for state-formulas � � � and� : (Dwyer et
al, 1998)

pattern scope PLTL-formula frequency

response global � � ��� � � � � � 43.4 %
universality global � � � 19.8 %
absence global � � � � 7.4 %
precedence global � � � � � � � � � � � � 4.5 %
absence between � � � � � � � � �

� � � � � � � � � � � ��� � � 3.2 %
absence after � � � � � � � � � � 2.1 %
existence global � � � 2.1 %

	 80 %

more info at: www.cis.ksu.edu/santos/spec-patterns/

System Validation – Computation Tree Logic 41

