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CTL Formal Methods and Tools

Overview of lecture
� Introduction

� Computation tree logic

– Syntax and semantics
– Some formulas express the same

� Model-checking CTL

� Fairness

� The difference between PLTL and CTL

� Practical use of CTL
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Linear and branching temporal logic

� Linear temporal logic:

“statements about (all) paths starting in a state”

– � ��� � ��� � 	 
 � iff for all possible paths starting in � always� � 	 


� Branching temporal logic:

“statements about all or some paths starting in a state”

– � ��� � � ��� � 	 
 � iff for all paths starting in � always� � 	 


– � ���  � ��� � 	 
 � iff for some path starting in � always� � 	 
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Why branching temporal logic?

� Expressiveness of linear and most branching temporal logics is
incomparable:

– there are properties that can be expressed in linear, but not in most
branching TL

– there are properties that can be expressed in most branching, but
not in linear TL

� The model-checking algorithms are different, and so are their time
and space complexities

model checking was originally developed for a branching temporal logic
[Emerson & Clarke 1981]
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Branching temporal logics
There are various branching temporal logics:

� Hennessy-Milner logic

� Computation Tree Logic (CTL)

� Extended Computation Tree Logic (CTL � )

– combines PLTL and CTL into a single framework

� Alternation-free modal � -calculus

� Modal � -calculus

� Propositional dynamic logic
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Propositional linear temporal logic

Is the smallest set of formulas generated by the rules:

1. each atomic proposition � is a formula

2. if � and � are formulas, then � � and � � � are formulas

3. if � and � are formulas, then � � (“next”) and � � � (“until”) are
formulas.

derived operators � (always) and � (eventually)

how to specify that for every computation it is
always possible to return to the initial state? � � start?
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Propositional branching temporal logic

� Extend PLTL with path quantifiers:

– � , where � � denotes that � holds over all paths
–  , where  � denotes that there exists some path satisfying �

� � � and  � are called state-formulas

� PLTL-formula � is called a path-formula

how to specify that for every computation it is
always possible to return to the initial state? � � � � start!

System Validation – Computation Tree Logic 7



CTL Formal Methods and Tools

Computation tree logic

CTL is the smallest set of formulas generated by the rules:

1. State-formulas:

(a) each atomic proposition � is a state-formula
(b) if � and � are state-formulas, then � � and � � � are state-

formulas
(c) if � is a path-formula, then  � and � � are state-formulas

2. Path-formulas:

(a) if � and � are state-formulas, then � � and � � � are path-
formulas.

� and � are always directly preceded by � or �
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Derived operators
� � � true � �

� � � � � � �

 � � �  � true � � � “potentially � ”

� � � � �  � � � “invariantly � ”

� � � � � � true � � � “inevitably � ”

 � � � � � � � � “potentially always � ”

the boolean connectives are derived as usual
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Derived operators

�� red

� � red

� � red

� � red
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Some example CTL-formulas

let �� be the set of atomic propositions over variable � , boolean
operators � , � and � , and function� � � for constant �

� the following formulas are legal CTL-formulas over �� :

– � �� � � � 	� � � �� � �	 �
– � � ��� � � 	 � � 
 �

–  � �� � 
 
 � � 	 
 
 �

– � � � 
 � � �  �� � � 
 � � � 
 �

� the following formulas are illegal CTL-formulas over �� :

– � �� � � � 	� � � ��
� � �	 �

–  � � ��� � � 
 � 
 � ��� � 
 � �

–  ��� � 	 
 
 � � � 	 
 �
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Interpretation of CTL

Formal interpretation of CTL-formulas is defined in terms of a Kripke
structure � � ��� ��� ��� ��� 	
� � � where

� � is a countable set of states,

� �  � is a set of initial states,

� �  �� � is a transition relation with � � � �� ��� ��� � � � � � � �� � � � �

� � 	 
� �� ��� � 	��� is an interpretation function on� .

� 	
� � � � � is the set of the atomic propositions that are valid in �
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Example Kripke structure

� � ���

� � ���

� � ���

� � ���

� � � �

up �up � up�up �

down
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Semantics of CTL: state-formulas

Defined by a relation ��� such that

� � � ��� � if and only if formula � holds in state � of structure �

� ��� � iff � � � 	 
� � � � �

� ��� � � iff � � � ��� � �

� ��� � � � iff � � ��� � � � � � ��� � �

� ���  � iff � ��� � for some path � that starts in �

� ��� � � iff � ��� � for all paths � that start in �
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Semantics of CTL: path-formulas

A path in � is an infinite sequence of states � � � � � �� � � such that � � � �

and � � � � � � � � � � � for all � � 

Define a relation ��� such that

� � � ��� � if and only if path � in model � satisfies formula �

� ��� � � iff � �� � ��� �

� ��� � � � iff ��� � � 
� � � � � ��� � 
 � � 
 � 	 � �� � � 	 � ��� � � �

where � � � � denotes the � � � � � -th state in the path �
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Example of semantics of CTL

� � �

0 1 3

2

� � �

� � � � � � � �

 � �

 � �

� � �

� � �
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Example of semantics of CTL (cont’d)

� � �

0 1 3

2
� � �

� � � � � � � �

� � � � � � �  � �
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Some important validities for CTL

PLTL expansion rules: � � � � � � � � 
 � � � � � � �

(last lecture) � � � � � � � �

� � � � 
 � � �

CTL expansion rules:  � � � � � � � � � � 
  �  � � � � � �

� � � � � � � � � � � 
 � � � � � � � � �

 � � � � �  �  � �

� � � � � � � � � � �

 � � � � 
  �  � �

� � � � � 
 � � � � �
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Specifying properties in CTL

� Triple Modular Redundant system: 3 processors and a single voter

– processors run same program; voter takes a majority vote
– each component (processor and voter) is failure-prone
– there is a single repairman for repairing processors and voter

Proc 1

Proc 2

Proc 3

input output

vote

vote

vote
Voter

� Modelling assumptions:

– if voter failes, whole system goes down
– after repair of voter, system starts “as new”
– state � �� processors � � voters �
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Specifying properties in CTL

up � up �
up �up �

0,1 1,1

2,1

0,0down

3,1

� Possibly, the system never goes
down:  � � �� ��

� Inevitably, the system never goes
down: � � � �� � �

� It is always possible to start as
new: � �  � � 	 � (not � � 
 � � )

� The system only goes down while
being operational:

� � � � 	 � � � 	 � � � �� � � �
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Model checking CTL

� how to check whether state � satisfies � ?

– compute recursively the set � 	� � � � of states that satisfy �

– check whether state � belongs to � 	 � � � �

� recursive computation:

– determine the sub-formulas of �

– start to compute � 	� � � � , for all atomic propositions � in �

– then check the smallest sub-formulas that contain �

– check the formulas that contain these sub-formulas
– and so on....... until formula � is checked
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Model checking CTL

� how to check whether state � satisfies � ?

– compute recursively the set � 	� � � � of states that satisfy �

– check whether state � belongs to � 	 � � � �

� recursive bottom-up computation:

– consider the parse-tree of �

– start to compute � 	� � � � , for all leafs in the tree
– then go one level up in the tree and check the formula of that node
– then go one level up and check the formula of that node
– and so on....... until the root of the tree (i.e., � ) is checked
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Model checking CTL: pseudo-algorithm

� � 	 � � � � is the set of states labelled with atomic proposition �

� � 	 � � � � � � is � 	 � � � � � � 	 � � � �

� � 	 � � � � � equals�� � 	 � � � �

� � 	 � �  � � � is the set of states that can directly move to � 	 � � � �

� � 	 � � � � � � is the set of states that can directly only move to � 	 � � � �

� � 	 � �  � � � � � � is computed iteratively:

– ��� � �� � ��� �

– �
	 = ��� �  -states that can directly move to � �

– ��� = ��	 �  -states that can directly move to � 	

– � � � � � � � � � until ��� �	 � ��
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Computing �� � ��� �� �� �	 
 � �� � � �
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Computing �� � ��� �� �� �	 
 � �� � � �

first iteration
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Computing �� � ��� �� �� �	 
 � �� � � �

first iteration

second iteration

System Validation – Computation Tree Logic 27



CTL Formal Methods and Tools

Computing �� � ��� �� �� �	 
 � �� � � �

first iteration

second iteration

third iteration
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Computing �� � ��� �� �� �	 
 � �� � � �

first iteration

second iteration

third iteration

fourth iteration done!
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Overview of model-checking CTL

� Algorithm: bottom-up traversal of the parse tree of the formula

� For until-formulas: a fixed-point computation

� For  � -formulas: a more efficient algorithm using detection of
strongly connected components

� Special attention has to be devoted to fairness issues

� Worst case time-complexity is � � � � ��� �
�

�

where �  � is the length of  and � is the number of states in the system model

� Tools: NUSMV, Cadence SMV, UPPAAL, CADP,� � � � � �
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PLTL versus CTL

� Their expressiveness is incomparable:

– there is no equivalent PLTL-formula for � � � � �

– there is no equivalent CTL-formula for � � � � � � � � � �

� each path reaches a point at which � holds for two consecutive moments

� � � � � � �� � � and � � � � � �� � � � do not express the same

– but there do exist common formulas like � � � � � � and � � �

� Complexity of model checking is different:

– model checking PLTL is PSPACE-complete: � � � 	�
 �� � � ��� ��� ���
�

– model checking CTL is in polynomial time: � � � 	�
 �� � � � ��  
� � �

don’t think that CTL model checking is more efficient
as CTL-formulas are sometimes much longer than PLTL-formulas!
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Fairness: modelling concurrency

Consider the parallel execution of two processes: (initially� � 
 )

process � � while � �� � 
 � do� � � � � � � od

process � � � � �� �

� Does this parallel program ever terminate?

� Expected runs: � � � � � � � � � or � � � � � � � � � � � or the like

� But not: � � � � � � � � (no � ) or � � � � � � (no � )

� Fairness is modeled by fair scheduling assumptions – described as
temporal logic-formulas – over the processes
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Typical fairness assumptions (in PLTL)

� Unconditional fairness: property running is true infinitely often:

� � � �� � �� �

� Weak fairness: if enabled is eventually continuously true, running
holds infinitely often:

� � � � 	 
 �� � � � � � �� � �� �

� Strong fairness: if enabled holds infinitely often, running does so too:

� � � � 	 
 �� � � � � � �� � �� �
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Fair versus unfair computations

do we have � � � � �� � � � � � �� � � ?
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Fair versus unfair computations

� no, since there exists an entirely green path!

� but, is this a “fair” path?
� no, as becoming red is possible infinitely often

� how to exclude these unfair computations?

� add a fairness assumption, e.g., � � � � red!

� then � � � � �� � � � � � �� � � is valid as the unfair
computations are ignored

� fairness assumptions rule out “unrealistic” runs
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Practical properties in CTL

� Reachability

– simple reachability  � �

– conditional reachability  � � � � �

– reachability from any state � � �  � � �

� Safety (“something bad never happens”)

– simple safety � � � �

– conditional safety � � � � � � � � � �

� Liveness � � � � � � � � �

� Fairness � � � � � � �
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How to use CTL in practice?

Capture commonly-used types of formulas in specification patterns

� Specification pattern: generalized description of a commonly
occurring requirement on the permissable paths in a model

– parameterizable: only state-formulas to be instantiated
– high-level: no detailed knowledge of TL is required
– formalism-independent: by mappings onto TL at hand

� Scope of a pattern: the extent of the computation over which the
pattern must hold, such as

– global: the entire computation
– after: the computation after a given state
– between: any part of the computation from one state to another
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Most commonly used specification patterns for CTL

Investigation of 555 requirement specifications reveals that the following
patterns are most widely used for state-formulas � � � and� : (Dwyer et
al, 1998)

pattern scope PLTL-formula frequency

response global � � ��� � � � � � 43.4 %
universality global � � � 19.8 %
absence global � � � � 7.4 %
precedence global � � � � � � � � � � � � 4.5 %
absence between � � � � � � � � �

� � � � � � � � � � � ��� � � 3.2 %
absence after � � � � � � � � � � 2.1 %
existence global � � � 2.1 %

	 80 %

more info at: www.cis.ksu.edu/santos/spec-patterns/
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