

Supriya Garg Shishir Kumar Agrawal Ankur Jain Vishal Verma Computer Science Department IIT Bombay

Thu, Mar 20, 2003

Full Screen Close Quit

Home Page

Contents

Page 1 of 12

Go Back

••

Plan for Lecture 29

- Kripke Structures
- Kripke Semantics

Examples of Modalities

- necessarily true
- known to be true
- believed to be true
- true in the true

i. Bondevik is prime-minister of Norway.ii. There are 9 planets in the Solar system.iii. The square root of 81 is 9.

ad(i)true now, will not be true in the future.ad(ii)true now, may be true forever in the future is not necessarily true.(it could be a different number)ad(iii)true now, necessarily true and will be in the future.

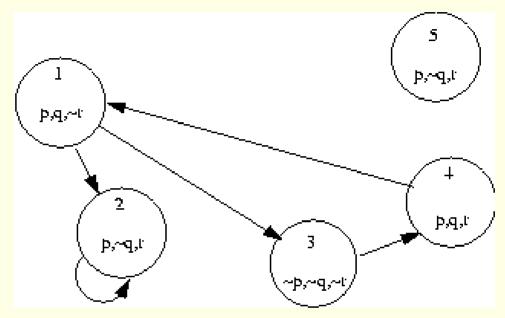
Semantics

A Kripke structure has the following components:

- A set W whose elements are called worlds. (Represented by circles in the diagram).
- A binary Accessibility Relation R(a,b) connecting the set of worlds. R(a,b) means that 'world *b* is *a*ccessible from *a*'.
- A function $L: W \to R$ called Labelling Function which contains all the propositions that are true in a given world.

Example of Kripke Structure

In the following figure:



In the above structure

- ullet Set of Worlds ${f W}$: (W_1 , W_2 , W_3 , W_4 , W_5)
- Accessibility relation \mathbf{R} : { (W_1 , W_2) , (W_1 , W_3) , (W_2 , W_2) , (W_3 , W_4) }
- Labelling function L: $W_1 \rightarrow (p, q, \neg r)$, $W_2 \rightarrow (p, \neg q, r)$ $W_3 \rightarrow (\neg p, \neg q, \neg r)$, $W_4 \rightarrow (p, q, r)$, $W_5 \rightarrow (p, \neg q, \neg r)$

Home Page
Title Page
Contents
44 >>
•
Page 5 of 12
Go Back
Full Screen
Close

Quit

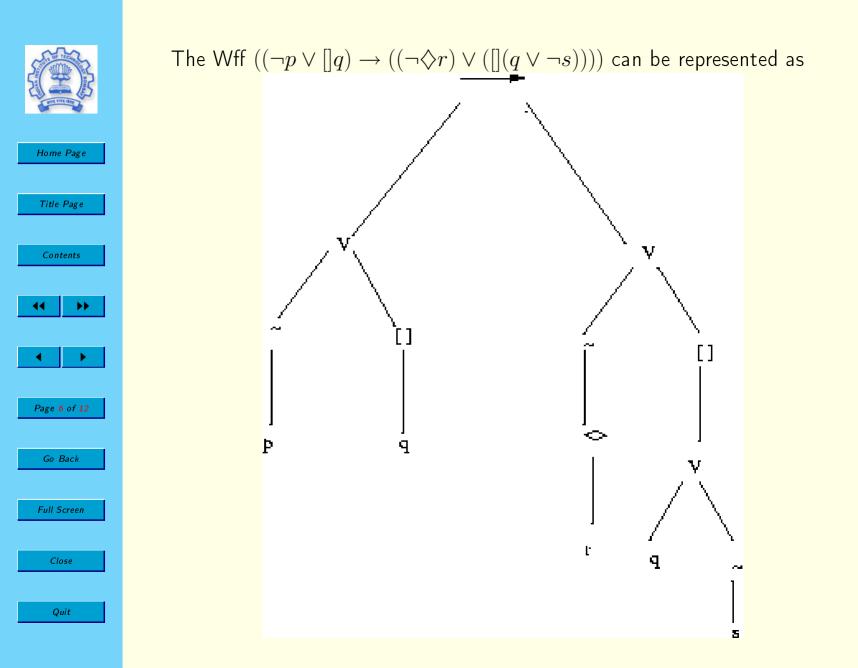
Well Formed Formulae (Wff)

Base case: A propositional symbol f is a well formed formula.

Induction: If f1 and f2 are well formed formulae so are:

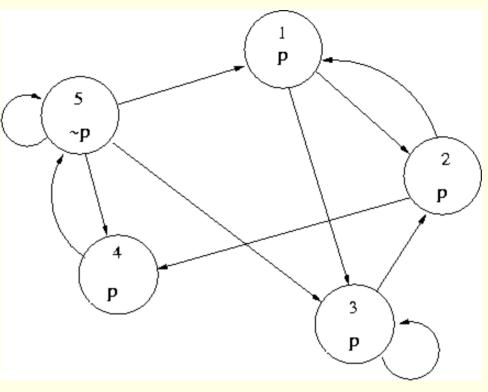
- $(f_1) \wedge (f_2)$
- $(f_1) \lor (f_2)$
- $(f_1) \rightarrow (f_2)$
- $\neg f_1$
- $[]f_1$
- $\Diamond f_1$

Closure condition: Nothing else is a well formed formula.



Home Page Title Page Contents •• Page 7 of 12 Go Back Full Screen Close Quit

Example of Semantics



In the above Kripke structure:

Worlds	$\Diamond P$	[]P	$\Diamond \Diamond P$	⊘ []P	[]�P	[][]P
W_1	Т	Т	Т	Т	Т	Т
W_2	Т	Т	Т	Т	Т	Т
W_3	Т	Т	Т	Т	Т	Т
W_4	F	F	Т	F	F	F
W_5	Т	F	Т	Т	F	F

Home Page			
Title Page			
Contents			
•• ••			
•			
Page 8 of 12			
Go Back			
Full Screen			
Close			

Satisfaction Relations for Kripke Structures

- $k \models_w p$ iff $p \in L(w)$
- $k \models_w \neg F$ iff $k \models_w /F$
- $k \models_w (F \land G)$ iff $k \models_w F$ and $k \models_w G$
- $k \models_w (F \lor G)$ iff $k \models_w G$ or $k \models_w F$
- $k \models_w F \to G$ iff $k \models_w G$, whenever we have $k \models_w F$
- $k \models_w F \iff G \text{ iff } (k \models_w F \text{ iff } k \models_w G)$
- $\bullet \; k \models_w []F \; \text{iff, for each} \; y \in W \; \text{with} \; R(x,y) \; \text{we have} \; y \models_w F$
- $\bullet \; k \models_w \diamondsuit F$ iff, there is $y \in W$ such that R(x,y) and $y \models_w F$
- $k \models p$ iff p is true in all worlds of k

Title Page
Contents
•• ••
•
Page 9 of 12
Go Back
Full Screen
Close

Quit

Kripke Structure K

All Kripke structures satisfy the property: $\models [](F \rightarrow G) \rightarrow ([]F \rightarrow []G)$

Proof

Suppose the above is not true.

 $\Rightarrow \exists a \text{ world } W_i \text{ where } [](F \to G) \text{ is true,}$

but $([]F \rightarrow []G)$ is not true

 \Rightarrow []F is true in W_i , []G is false in W_i

 $\Rightarrow \exists a \ W_j$ such that $(W_i, W_j) \in \mathsf{R}$ and F is true

```
in W_j but G is false in W_j
```

```
\Rightarrow (F \rightarrow G) is false in W_j
```

```
\Rightarrow [](F \rightarrow G) is false in W_i - a contradiction.
Hence proved.
```

Theorems that hold in K

- $\bullet ~ [](p \wedge q) \iff ([]p \wedge []q)$
- $\bullet \; ([]p \lor q) \to [](p \lor q)$
- $\bullet ~ [] p \iff \neg \diamondsuit (\neg p)$

T Structure

T is defined as a reflexive Kripke structure or equivalently as $T = K + T; T : ([]p \rightarrow p)$ **Proof**: TPT reflexivity $\rightarrow ([]p \rightarrow p)$. Assume $([]p \rightarrow p)$ is not true in K(reflexive). $\Rightarrow \exists a \text{ world } W_i s.t.([]p \rightarrow p) \text{ is not true in } W_i.$ $\Rightarrow \text{ in } W_i []p \text{ is true and } p \text{ is false.}$ But since $[]p \text{ is true in } W_i \text{ and } (W_i, W_i) \in \mathbb{R} \text{ (due to reflexivity),} p \text{ is true in } W_i. - a \text{ Contradiction.}$ **Hence proved**.

The proof of $([]p \rightarrow p) \rightarrow reflexivity$ is left as an exercise.

Theorems that hold in T

- $p \to \diamondsuit p$
- $\bullet \diamondsuit (p \to []p)$

S4 Structure

S4 is defined as a reflexive and transitive Kripke structure or equivalently as S4=T+ S4 ; S4 : ([] $p \rightarrow$ [][]p)

Proof: TPT $reflexivity \rightarrow ([]p \rightarrow p)$ Assume $([]p \rightarrow [][]p)$ is not true in K(reflexive and transitive). $\Rightarrow \exists$ a world W_i s.t. $([]p \rightarrow [][]p)$ is not true in W_i . \Rightarrow in $W_i[]p$ is true and [][]p is false. $\Rightarrow \exists W_j$ s.t. $(W_i, W_j) \in \mathbb{R}$ and []p is false in W_j . $\Rightarrow \exists W_k$ s.t. $(W_j, W_k) \in \mathbb{R}$ and p is not true in W_k . But since $(W_i, W_k) \in R$ (due to transitivity) and []p is true in W_i , p is true in W_k . — a Contradiction. **Hence proved.**

Theorems which hold in S4

 $\bullet \Diamond p \iff \Diamond \Diamond p$

S5 Structure

S5 is defined as a reflexive, transitive and symmetric Kripke structure or equivalently as S5 = S4 + S5; S5 : $(\neg[]p \rightarrow [](\neg[]p))$ The proof of the above equivalence is left as an exercise.

The above axiom S5 can also be written as: $(\diamondsuit p \to [] \diamondsuit p)$

In S5 every modality is equivalent to one of the following or their negatives.

$$\bullet \ -, [], \diamondsuit$$