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Plan for Lecture 29
• Kripke Structures
• Kripke Semantics
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Examples of Modalities
• necessarily true
• known to be true
• believed to be true
• true in the true

i. Bondevik is prime-minister of Norway.
ii.There are 9 planets in the Solar system.
iii.The square root of 81 is 9.
ad(i)true now,will not be true in the future.
ad(ii)true now, may be true forever in the future is not necessarily true.
(it could be a di�erent number)
ad(iii)true now, necessarily true and will be in the future.
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Semantics
A Kripke structure has the following components:

• A set W whose elements are called worlds.
(Represented by circles in the diagram).
• A binary Accessibility Relation R(a,b) connecting the set of worlds.
R(a,b) means that 'world b is accessible from a'.
• A function L : W → R called Labelling Function which contains all
the propositions that are true in a given world.
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Example of Kripke Structure
In the following �gure:

In the above structure

• Set of Worlds W : (W1 ,W2 , W3 ,W4 ,W5 )
• Accessibilty relation R : { ( W1 , W2 ) , ( W1 ,W3 ) ,
( W2 , W2 ) , ( W3 , W4 ) }
• Labelling function L: W1 → (p, q,¬r), W2 → (p,¬q, r)
W3 → (¬p,¬q,¬r), W4 → (p, q, r), W5 → (p,¬q,¬r)
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Well Formed Formulae (W�)
Base case: A propositional symbol f is a well formed formula.
Induction: If f1 and f2 are well formed formulae so are:
• (f1) ∧ (f2)

• (f1) ∨ (f2)

• (f1)→ (f2)

• ¬f1

• []f1

• ♦f1

Closure condition: Nothing else is a well formed formula.
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The W� ((¬p ∨ []q)→ ((¬♦r) ∨ ([](q ∨ ¬s)))) can be represented as
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Example of Semantics

In the above Kripke structure:
Worlds ♦P []P ♦♦P ♦[]P []♦P [][]P

W1 T T T T T T
W2 T T T T T T
W3 T T T T T T
W4 F F T F F F
W5 T F T T F F
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Satisfaction Relations for

Kripke Structures
• k |=w p i� p ∈ L(w)

• k |=w ¬F i� k |=w /F

• k |=w (F ∧G) i� k |=w F and k |=w G

• k |=w (F ∨G) i� k |=w G or k |=w F

• k |=w F → G i� k |=w G,whenever we have k |=w F

• k |=w F ⇐⇒ G i� (k |=w F i� k |=w G)

• k |=w []F i�, for each y ∈ W with R(x, y) we have y |=w F

• k |=w ♦F i�, there is y ∈ W such that R(x, y) and y |=w F

• k |= p i� p is true in all worlds of k
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Kripke Structure K
All Kripke structures satisfy the property:
|= [](F → G)→ ([]F → []G)

Proof:
Suppose the above is not true.
⇒ ∃ a world Wi where [](F → G) is true,
but ([]F → []G) is not true
⇒ []F is true in Wi, []G is false in Wi

⇒ ∃ a Wj such that (Wi,Wj) ∈ R and F is true
in Wj but G is false in Wj

⇒ (F → G) is false in Wj

⇒ [](F → G) is false in Wi - a contradiction.
Hence proved.

Theorems that hold in K

• [](p ∧ q) ⇐⇒ ([]p ∧ []q)

• ([]p ∨ q)→ [](p ∨ q)

• []p ⇐⇒ ¬♦(¬p)
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T Structure
T is de�ned as a re�exive Kripke structure
or equivalently as
T = K+ T; T : ([]p→ p)

Proof: TPT re�exivity → ([]p→ p).
Assume ([]p→ p) is not true in K(re�exive).
⇒ ∃ a world Wis.t.([]p → p) is not true in Wi.

⇒ in Wi []p is true and p is false.
But since []p is true in Wi and (Wi,Wi) ∈ R (due to re�exivity),
p is true in Wi. � a Contradiction.
Hence proved.
The proof of ([]p→ p)→ reflexivity is left as an exercise.
Theorems that hold in T

• p→ ♦p

• ♦(p→ []p)
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S4 Structure
S4 is de�ned as a re�exive and transitive Kripke structure
or equivalently as
S4 = T+ S4 ; S4 : ([]p→ [][]p)

Proof: TPT reflexivity → ([]p→ p)

Assume ([]p→ [][]p) is not true in K(re�exive and transitive).
⇒ ∃ a world Wi s.t. ([]p→ [][]p) is not true in Wi.
⇒ in Wi[]p is true and [][]p is false.
⇒ ∃Wj s.t.(Wi,Wj) ∈ R and []p is false in Wj.
⇒ ∃Wk s.t. (Wj,Wk) ∈ R and p is not true in Wk.
But since (Wi,Wk) ∈ R (due to transitivity) and []p is true in Wi, p is
true in Wk. � a Contradiction.
Hence proved.

Theorems which hold in S4

• ♦p ⇐⇒ ♦♦p
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S5 Structure
S5 is de�ned as a re�exive, transitive and symmetric Kripke structure
or equivalently as
S5 = S4+ S5; S5 : (¬[]p→ [](¬[]p))

The proof of the above equivalence is left as an exercise.
The above axiom S5 can also be written as:
(♦p→ []♦p)

In S5 every modality is equivalent to one of the following
or their negatives.
• −, [],♦


