

CS206 Lecture 01 Propositional Logic

G. Sivakumar Computer Science Department IIT Bombay siva@iitb.ac.in http://www.cse.iitb.ac.in/~siva

Thu, Jan 02, 2003

Plan for Lecture 02

- Syntax
- Semantics

Home Page
Title Page
Contents
< →
• •
Page 2 of 9
Go Back
Full Screen
Close

Quit

Propositions

A Proposition is a statement with a *truth value*.

- My name is Sivakumar
- Earth is bigger than the Sun.
- 2 + 2 = 4
- ...
- This statement is false.

Which ones "mean" *true* and which ones *false*? A typical *puzzle*

An island is inhabited by two classes of people: knights, who make only true statements, and knaves, who make only false statements. Three inhabitants are conversing. Ashok says, "All of us are knaves." Balu says, "Exactly one of us is a knight." What are Ashok, Balu, and Chandra?

Contents						
•• ••						
Page 3 of 9						
Go Back						
Full Screen						
Close						

Quit

Classical Logic

Has the law of Excluded Middle.

Any proposition has **exactly one** of the two possible **truth values**. No ArdhaNariswara!

Allows proof by contradiction.

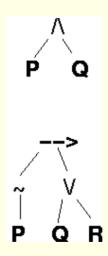
Non-Constructive Proofs: You can prove a number is not a prime without revealing any way to factorize it. Many other flavours possible.

- Multi-valued logic. *yes, no, maybe*
- Fuzzy Logic *degree of truth*
- Probalistic Logic
- Constructive Logic
- ...

What is Syntax?

- A method to define "legal" Alphabet, Words, Sentences ...
- For any **formal** language, it is possible to give a **grammar** (set of rules) using which we can construct (and check) all **sentences** (*formulae*) of the language.
- Can be done algorithmically (on computer).
- Typically given as an **inductive** definiton. With **base case** (*atomic* formula) and **inductive case** (*compound* formula).
- Computer program to check is typically called Parser

Propositional Logic Alphabet


- Propositional Symbols
 - Truth Values: $\mathbf{t},\,\mathbf{f}$ (sometimes 1,0)
 - Propositions: $\mathbf{p},\,\mathbf{q},\,\mathbf{r}$
- Logical Connectives
 - Unary (One Argument)
 - * Negation (not, \neg , \sim)
 - Binary (Two Arguments)
 - * Conjunction (and, \land)
 - * Disjunction (or, \lor)
 - * Implication (implies, \rightarrow)
 - * Exclusive-OR (xor, \oplus)
 - * Equivalence (\leftrightarrow)
 - *

Sample Formulae

- Linear Notation
 - $\begin{array}{l} -p \wedge q \\ -\neg(p) \rightarrow (q \lor r) \\ -(p \rightarrow q) \leftrightarrow (\neg(p) \lor q) \end{array}$
- Tree Notation

— . . .

Propositional Formulae

Well Formed Formula (wff) Inductive Definition

- Base case (*atomic* formula) A propositional symbol is a wff..
- \bullet Inductive case If f_1 and f_2 are wffs, then so are

 $-\neg(f1)$ - (f1) \land (f2) - (f1) \lor (f2) - (f1) \rightarrow (f2)

— . . .

• Closure condition Nothing else is a wff!

Alternative Definition (Tree based) A wff is a tree satisying the following:

- Leaves are labelled with propositional symbols.
- Interior nodes are labelled with logical connectives of the myredcorrect arity.

Correct arity means that the number of children is 1 for **unary**, 2 for **binary** etc. Tree notation avoids clumsy **paranthesis**.

Semantics

- ullet Semantics is the $\mathrm{meaning}$ of a sentence.
- ullet In classical logic, every sentence must mean either ${f true}$ or ${f false}$.
- How to assign a meaning to a formula?
 - Base Case

An interpretation, or truth assignment, is a function from a set of propositional symbols to $\{t, f\}$.

Inductive Case

Truth Tables for Connectives

р	q	$\neg p$	$p \wedge q$	$p \vee q$	$p \rightarrow q$	$p \leftrightarrow q$
t	t	f	t	t	t	t
t	f	f	f	t	f	f
f	t	t	f	t	t	f
f	f	t	f	f	t	t

- p,q above actually any formulae f_1,f_2 .
- Note: Truth table for → (implication) is non intuitive.
 If pigs had wings, India will win world cup.

Back to Puzzle

Let us solve the following, using propositional logic.

An island is inhabited by two classes of people: knights, who make only true statements, and knaves, who make only false statements. Three inhabitants are conversing. Ashok says, "All of us are knaves." Balu says, "Exactly one of us is a knight." What are Ashok, Balu, and Chandra?

More CS-related one (homework)

Either the program never terminates or the value of n is eventually zero. If the value of n is eventually zero then the value of m will also eventually be zero. The program does terminate. Therefore the value of m will eventually zero. (T: the program terminates; N: the value of n is zero; M: the value of n is zero.)