

CS206 Lecture 04 Proof Procedures

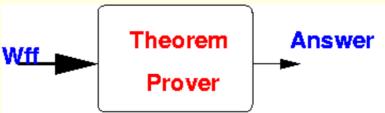
G. Sivakumar Computer Science Department IIT Bombay siva@iitb.ac.in http://www.cse.iitb.ac.in/~siva

Mon, Jan 06, 2003

Plan for Lecture 04

- Proof Procedures
- Boolean Ring Method

Proof Procedure



Possible Answers

Satisfiable

Tautology

Contradiction

•••

Don't know!

Doesn't Stop?

Close	
Quit	

Decision Procedure

- A Proof procedure is a Decision Procedure (Algorithm) if it always halts with an answer in finite time.
- Soundness
 - A proof procedure is *sound* if it never gives a wrong answer.

For Propositional Logic there are many sound decision procedures.

- Truth Table.
- Semantic Methods (Gentzen)
 - Natural Deduction
 - $\; {\sf Sequent} \; {\sf Calculus}$
- Syntactic Methods
 - Hilbert's Proof System
 - Simplification (Boolean Ring)
 - Resolution Theorem Proving
 - Binary Decision Diagrams (BDD)

Why so many methods? Efficiency.

Completeness

For some logics (we'll see later), it is not possible to give decision procedures.

That is, every theorem prover that is sound, will not halt on some inputs! (*a very non-intuitive and hard result to prove.*).

Completeness of a proof procedure is a weaker notion than termination. Informal Definition

• A proof procedure is complete, if whenever the input is satisfiable, it answers correctly that it is satisfiable.

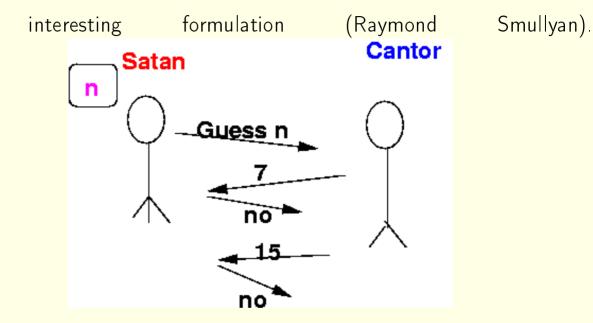
(Note: Nothing implied about behaviour when input is a contradiction). This leads to the notion of a semi-decision procedure.

A Semi-Decision Procedure

A trivial example, to illustrate the concept. Input: A polyonmial P(x) (example: $3x^3 + 2x - 5$). **Problem**: Does the polynomial have postive integer root? (that is, is there x > 0 such that P(x) = 0?). Semidecision Procedure i = 0repeat if P(i) = 0then print YES break else i = i + 1end repeat This method is sound and complete, but is not a decision procedure.

Very

Satan-Cantor Puzzle



Satan-Cantor Variations

- Natural Numbers (0,1,2,3 ...)
- Integers (Negative numbers also)
- \bullet Pairs (, $\langle <3,8>\rangle\langle <-4,7>\rangle$
- Triples, Quadruples, ...
- N-tuple with N unknown, but finite.
- Real Numbers

Notions of

- Countable
- Fair Enumeration

are very useful in proof procedures (and logic programming)

Booelan Ring Rewriting Method

Given a set R of rewriting rules, proceed as follows.

- ullet Start with f as input formula f_0
- Repeat
 - If f "simplifies" to f_1 using R* then let $f = f_1$ * else f is a normal form. Break
- If f = 0 print "Contradiction"
 - elseif f = 1 print "Tautology"
 - else print "Satisfiable"

Boolean Ring Rules

$$neg(x) \rightarrow x+1$$

$$x \lor y \rightarrow x+y+xy$$

$$x1 \rightarrow x$$

$$x0 \rightarrow 0$$

$$xx \rightarrow x$$

$$x+x \rightarrow 0$$

$$x+x \rightarrow 0$$

$$x+y+xz$$

$$(y+z) \rightarrow xy+xz$$

$$(y+z)x \rightarrow yx+zx$$

Just like **polynomials** we work with in algebra.

Associativity and Commutativity

Can't use as rules. We will lose termination!

Interesting properties (AC)

Sample Problems Again

How to formulate and solve?

An island is inhabited by two classes of people: knights, who make only true statements, and knaves, who make only false statements. Three inhabitants are conversing. Ashok says, "All of us are knaves." Balu says, "Exactly one of us is a knight." What are Ashok, Balu, and Chandra?

Either the program never terminates or the value of n is eventually zero. If the value of n is eventually zero then the value of m will also eventually be zero. The program does terminate. Therefore the value of m will eventually zero. (T: the program terminates; N: the value of n is zero; M: the value of n is zero.)

Course HomePage Ready. http://www.cse.iitb.ac.in/~cs206/