
Home Page
Title Page
Contents

JJ II

J I

Page 1 of 32
Go Back

Full Screen
Close
Quit

CS206 Lecture 09
Logic Progamming (Prolog)

G. Sivakumar
Computer Science Department

IIT Bombay
siva@iitb.ac.in

http://www.cse.iitb.ac.in/∼siva
Fri, Jan 17, 2003

Plan for Lecture 9
• Prolog Vocabulary Syntax
• Numbers and Structured Data

Home Page
Title Page
Contents

JJ II

J I

Page 2 of 32
Go Back

Full Screen
Close
Quit

Syntax of Prolog Language
A Prolog program is a collection of two types of logical formulae:
1. Facts (or Unit Clauses)
2. Rules (Head :- Body.)
To build formulae we use:
Terms: These are the basic data objects in the domain built using:

- Variables
- Constants
- Function Symbols.

Predicate Symbols: These symbols take terms as arguments to return
unit clauses which should have the meaning of true or false only.

Connectives Like � :- � � , � and � . �.

Home Page
Title Page
Contents

JJ II

J I

Page 3 of 32
Go Back

Full Screen
Close
Quit

Constants and Variables
Constants are the basic items (atoms) in the domain of the problem.
Denoted by a sequence of alphanumeric characters not beginning with a
capital letter or underscore (_).
Examples:

ganga, kaveri, jaya, 0, 23, 12.7, iitb

In simple (�at) domains answers to queries will instantiate variables in the
query to one of these constants.
Variables are denoted by a sequence of alphanumeric characters beginning
with a capital letter or underscore (_). Examples:
X, X2, River, State, List1,

Arg2, _XX23, _, __, Constant.

A variable, as the name implies, will be instantiated to take di�erent values
(terms) from the underlying domain when solving goals in which they occur.
Typically, we do not use underscore (_) to start variable names, and we
use suggestive names that make the clauses easy to understand.

Home Page
Title Page
Contents

JJ II

J I

Page 4 of 32
Go Back

Full Screen
Close
Quit

Function Symbols
In reasonably complex domains, we cannot represent all objects simply by
constants, but need a more structured representation. For this we use
function symbols.
Example1: Consider Natural Numbers:

0, 1, 2, 3, 4, 5, . . .

This representation needs as many atoms as there are numbers (in�nite).
Let us introduce one unary function symbol s (for successor).
Using 0 and s we can construct all the numbers as follows

0, s(0), s(s(0)), s(s(s(0))), ...

In general we can write sn(0) to denote the natural number n.

Home Page
Title Page
Contents

JJ II

J I

Page 5 of 32
Go Back

Full Screen
Close
Quit

More Examples
We may want to represent all triples of numbers.
Using a function symbol tr that takes 3 arguments we can build all triples
tr(0,0,0), tr(s(0),0,s(s(0))),

tr(tr(0,0,0),0,0) ...

Note that tr need not have only constants as arguments
Example 3:
We may have structured information about songs like their: title, raga, tala
and composer.
A function symbol song taking 4 arguments can be used for this.
song(vatapi, hamsadvani, aadi, dikshitar)

song(brocheva, khamas, aadi, vasudevachar)

...

Home Page
Title Page
Contents

JJ II

J I

Page 6 of 32
Go Back

Full Screen
Close
Quit

Predicate Symbols (Relations)
A predicate symbol is somewhat like a function symbol. It has an arity
(number of arguments) and takes that many terms as arguments to
return a unit clause.
Example: plus has arity 3 (denoted plus/3).
Unit Clauses: plus(0,s(0),s(0)), plus(0,0,s(0))
Similarly double(X,Y) can mean Y = 2 * X.
Note: The di�erence is that while function symbols can be nested in terms
(example � s(s(0))), predicate symbols can occur only at the outermost
level and cannot be nested.
Question: We cannot write:

plus(0,plus(0,0,s(0)),0), why?

Home Page
Title Page
Contents

JJ II

J I

Page 7 of 32
Go Back

Full Screen
Close
Quit

Facts
A fact is a unit clause.
If p is a predicate symbol of arity n and t1, ..., tn are terms, then
p(t1, ... ,tn) is an unit clause.
To input this in as a Prolog program the �.� is also needed.
Examples:

cm_of(tn, jaya).

spoken_in(maha, marati).

title_of(song(Ttl,Raga,Tala,Comp), Ttl).

Home Page
Title Page
Contents

JJ II

J I

Page 8 of 32
Go Back

Full Screen
Close
Quit

Rules
A rule for a Prolog program is
head :- Body.

where head is a unit clause and Body is unit clauses separated by �,�
This is to be read as

IF Body THEN Head
Examples:
spoken_near(River, Lang) :-

flows_through(River, State),

spoken_in(State, Lang).

times(s(X),Y,Z) :-

times(X,Y,Z1),

add(Y,Z1,Z).

The intended meaning of the second rule above is:
IF (X times Y is Z1 AND Y plus Z1 is Z)
THEN s(X) times Y is Z.

Home Page
Title Page
Contents

JJ II

J I

Page 9 of 32
Go Back

Full Screen
Close
Quit

How Prolog answers goals
Given a Prolog program P and a goal G, what is an answer to the
goal?
1. G has no variables

• yes (if G is true/provable from P)
• no (otherwise)

2. G has variables
• Values for the variables in G that make it true
• no if G can never be true

Here �true� (�provable�) are used informally. This is the Declarative
Semantics (Meaning) of a Prolog program.

Home Page
Title Page
Contents

JJ II

J I

Page 10 of 32
Go Back

Full Screen
Close
Quit

Many answers to a goal
What if G has many solutions?
A complete interpreter is one that produces them all (if they are �nitely
many), or enumerates them (fairly) if there are in�nitely many.
But, in what order?
And how do Prolog interpreters actually do this?
This is the Procedural Semantics

Home Page
Title Page
Contents

JJ II

J I

Page 11 of 32
Go Back

Full Screen
Close
Quit

Prolog's Solution Mechanism
How does Prolog answer a query?
- Searches the program from Top To Bottom looking for a fact or a rule
that can be used.
- If a fact can be used, one answer can be generated.
- If the head of a rule �ts, then the body gives new subgoals which are
solved from Left To Right.
Note that each time we use a fact or rule we
- Use new copies with new varibles.
- Keep track of substitutions made in the variables of the goal to produce
the �nal answer.

Home Page
Title Page
Contents

JJ II

J I

Page 12 of 32
Go Back

Full Screen
Close
Quit

Example Program
Suppose program P had the following information about ragas and songs
in this order .
mela_raga(kharaharapriya).

mela_raga(mayamalavagoula).

same_family(kharaharapriya,sahana).

same_family(kharaharapriya,khamas).

same_family(mayamalavagoula,saveri).

same_family(R,R).

same_family(R1, R2) :- same_family(R2, R1).

song(giripai, sahana)

song(chakkani, kharaharapriya)

song(brocheva, khamas)

song(karikalaba, saveri)

song(merusamana, mayamalavagoula)

song(devadeva, mayamalavagoula)

Home Page
Title Page
Contents

JJ II

J I

Page 13 of 32
Go Back

Full Screen
Close
Quit

Example Program (ctd.)
And P has some facts and rules about which ragas and songs are liked by
some person.
likes(siva, saveri).

likes_song(Person, Song) :- song(Song, Raga),

likes(Person, Raga).

likes_song(Person, Song) :- likes(Person, Raga1),

song(Song, Raga2), same_family(Raga1, Raga2).

Goals
:- song(Name, mayamalavagoula).

:- song(Name, Raga).

:- likes_song(siva,X).

Home Page
Title Page
Contents

JJ II

J I

Page 14 of 32
Go Back

Full Screen
Close
Quit

Top-to-Bottom selection of

facts/rules
song(Name, mayamalavagoula) has two answers.
Name = merusamana;

Name = devadeva;

and they will be produced in this order.
Similarly, song(Name, Raga) has 6 answers and will be produced in this
order.
Name = giripai, Raga = sahana;

Name = chakkani, Raga = kharaharapriya;

Name = brocheva, Raga = khamas;

Name = karikalaba, Raga = saveri;

Name = merusamana, Raga = mayamalavagoula;

Name = devadeva, Raga = mayamalavagoula;

Home Page
Title Page
Contents

JJ II

J I

Page 15 of 32
Go Back

Full Screen
Close
Quit

Left-to-Right for Subgoals
Consider the goal likes_song(siva,X). From the declarative meaning
we know that there are 3 answers. But, will they all be produced? In what
order?
To solve this goal, two rules can be used. The �rst from top will be tried
�rst and all answers using this produced.
Then, the program will try the second rule and try to produce more answers.
Using the �rst rule, we get two subgoals
song(Song,Raga), likes(siva,Raga).

These will be tried left-to-right

Home Page
Title Page
Contents

JJ II

J I

Page 16 of 32
Go Back

Full Screen
Close
Quit

Procedural Semantics (ctd.)
The �rst answer for song(Song,Raga) is
Song = giripai, Raga = sahana

- Proceed to the remaining subgoal
likes(siva,Raga) with the value Raga = sahana. That is, we try to
solve the goal likes(siva, sahana).
- fails, as no fact or rule matches this.
- Produce next answer for song(Song, Raga)

Song = chakkani, Raga = kharaharapriya

- fail on new subgoal
likes(siva,kharaharapriya)

Continuing like this, we produce only one answer X = karikalaba for the
goal likes(siva,X) using the �rst matching rule.

Home Page
Title Page
Contents

JJ II

J I

Page 17 of 32
Go Back

Full Screen
Close
Quit

Solution Strategy (ctd.)
We now proceed to use the second rule for solving likes(siva,X).
This gives subgoals
likes(siva, Raga1), song(Song, Raga2),

same_family(Raga1, Raga2).

to be solved from left-to-right.
The �rst subgoal has only one answer Raga1 = saveri.
The �rst answer to second subgoal is again
Song = giripai, Raga2 = sahana

Now we proceed to the third subgoal
same_family(saveri,sahana)

Home Page
Title Page
Contents

JJ II

J I

Page 18 of 32
Go Back

Full Screen
Close
Quit

In�nite Loops!
To solve same_family(saveri, sahana),
the only rule usable is
same_family(R1, R2) :- same_family(R2, R1).

which produces the subgoal same_family(sahana, saveri)

To solve this, we use the same rule again and get back the goal
same_family(saveri, sahana).
And we are stuck in this loop!
1. How to �x the program to get all the answers for the query?
2. How to re-order goals in the body of rules?
3. How to re-order facts and rules to make the search better?
4. Draw in tree form the complete execution trace for sample goals.
It must be emphasized that the top-to-bottom and left-to-right choices are
not a must. They are chosen only for e�ciency.

Home Page
Title Page
Contents

JJ II

J I

Page 19 of 32
Go Back

Full Screen
Close
Quit

Natural Numbers
As seen earlier:
Constant: 0

Function: s (unary)

The following Prolog program de�nes what is a natural number.
is_nat(0).

is_nat(s(X)) :- is_nat(X).

What will be the solutions to the goal
is_nat(U).

Home Page
Title Page
Contents

JJ II

J I

Page 20 of 32
Go Back

Full Screen
Close
Quit

Simple Predicates
How to test if a number is even?
is_even(0).

is_even(s(s(X))) :- is_even(X).

No need for division!
Similarly can you de�ne
is_odd(X):-

is_multof_3(X):-

Home Page
Title Page
Contents

JJ II

J I

Page 21 of 32
Go Back

Full Screen
Close
Quit

Comparison Functions
How to compare numbers? Let is_less_equal(X,Y) mean

�X is less than or equal to Y�
How does the following work?
is_less_equal(0,X) :- is_nat(X).

is_less_equal(s(X),s(Y)) :- is_less_equal(X,Y).

Consider queries with:
- No variables (is_less_equal(s(s(0)), s(s(s(0))))).

- One variable (is_less_equal(s(s(0)),X)).
- Both variables (is_less_equal(U,V)).
Question: Is Prolog fair when enumerating answers?

Home Page
Title Page
Contents

JJ II

J I

Page 22 of 32
Go Back

Full Screen
Close
Quit

Simple Arithmetic
How to de�ne plus(X, Y, Z) to mean

� Z is the sum of X and Y�
plus(0,Y,Y).

plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

Try sample goals:
- No variables.
- 1, 2, 3 variables.
Don't we need to say:
plus(0,Y,Y) :- is_nat(Y).

Remember: there is no explicit typing in Prolog!

Home Page
Title Page
Contents

JJ II

J I

Page 23 of 32
Go Back

Full Screen
Close
Quit

Subtraction
How do we write the relation di�(X, Y, Z) to mean that:

�Z is X - Y.�
Method 1:
diff(X,0,X).

diff(s(X),s(Y),Z) :- diff(X,Y,Z).

Method 2:
diff(X,Y,Z) :- plus(Y,Z,X).

Questions: Are these the same?
Are we testing if Y is less-than X anywhere?

Home Page
Title Page
Contents

JJ II

J I

Page 24 of 32
Go Back

Full Screen
Close
Quit

Multiplication
How do we write times(X, Y, Z) to mean

�Z is the product of X and Y.�
Check this solution:
times(0,Y,0).

times(s(X),Y,Z):- times(X,Y,Z1), plus(Y,Z1,Z).

Again try all types of goals.
- No variables.
- 1, 2, 3 variables.

Home Page
Title Page
Contents

JJ II

J I

Page 25 of 32
Go Back

Full Screen
Close
Quit

Note about Prolog
The example of times shows how de�nitions written in Prolog which work
well in the �testing� mode (that is, queries with all arguments as ground
terms without varibles) do not behave as desired when some of the argu-
ments are changed to variables.
That is, even though Prolog does not give any wrong answers, it has the
following drawbacks:
- Answers not enumerated fairly.
- Prolog runs out of stack/heap and aborts.
- All answers enumerated but Prolog continues in an �in�nte loop�.
Using the times example all this behaviour can be observed
This �misbehaviour� of Prolog is because of the two �arbitrary� choices that
Prolog made:
- Top To Bottom in choosing rules/facts.
- Left To Right when solving goals.
for e�ciency reasons.

Home Page
Title Page
Contents

JJ II

J I

Page 26 of 32
Go Back

Full Screen
Close
Quit

Division
divides(X, Y) means

�Y is a factor of X�
Method 1:
divides(X,Y):- times(Y, U, X)

Method 2:
divides(0,Y).

divides(Y,Y).

divides(X,Y):- plus(Y,U,X), divides(U,Y).

Questions: Which is better?
- Do we need the second fact in Method 2?
- How do they work on di�erent queries?

Home Page
Title Page
Contents

JJ II

J I

Page 27 of 32
Go Back

Full Screen
Close
Quit

Remainder
mod(X,Y,Z) means

�On dividing X by Y we get Z as the remainder�
mod(X,Y,X):- is_less(X,Y).

mod(X,Y,Z):- plus(Y,U,X), mod(U,Y,Z).

Compare this with the �divides� predicate.
Similarly can you write �quotient� predicate?
How to do this using the �times� predicate?

Home Page
Title Page
Contents

JJ II

J I

Page 28 of 32
Go Back

Full Screen
Close
Quit

GCD computation
gcd(X, Y, Z) means

�Z is the greatest common divisor of X and Y�
gcd(0,X,X) :- is_gt(X,0) % To avoid gcd(0,0,0)

gcd(X,Y,Ans) :- mod(X,Y,Z), gcd(Y,Z,Ans).

Exercise: Trace some sample goals. How to do this using the �times�
predicate?

Home Page
Title Page
Contents

JJ II

J I

Page 29 of 32
Go Back

Full Screen
Close
Quit

Homework
Try the following.
factorial(0) = 1

factorial(n+1) = (n+1) * factorial(n)

ackermann(0,N) = N + 1.

ackermann(M,0) = ackermann(M-1, 1).

ackermann(M+1,N+1) =

ackermann(M, ackermann(M+1, N))

fib(0) = 1.

fib(1) = 1.

fib(n+2) = fib(n+1) + fib(n).

