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CS206 Lecture 09
Logic Progamming (Prolog)

G. Sivakumar
Computer Science Department

IIT Bombay
siva@iitb.ac.in

http://www.cse.iitb.ac.in/∼siva
Fri, Jan 17, 2003

Plan for Lecture 9
• Prolog Vocabulary Syntax
• Numbers and Structured Data
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Syntax of Prolog Language
A Prolog program is a collection of two types of logical formulae:
1. Facts (or Unit Clauses)
2. Rules ( Head :- Body. )
To build formulae we use:
Terms: These are the basic data objects in the domain built using:

- Variables
- Constants
- Function Symbols.

Predicate Symbols: These symbols take terms as arguments to return
unit clauses which should have the meaning of true or false only.

Connectives Like � :- � � , � and � . �.
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Constants and Variables
Constants are the basic items (atoms) in the domain of the problem.
Denoted by a sequence of alphanumeric characters not beginning with a
capital letter or underscore (_).
Examples:

ganga, kaveri, jaya, 0, 23, 12.7, iitb

In simple (�at) domains answers to queries will instantiate variables in the
query to one of these constants.
Variables are denoted by a sequence of alphanumeric characters beginning
with a capital letter or underscore (_). Examples:
X, X2, River, State, List1,

Arg2, _XX23, _, __, Constant.

A variable, as the name implies, will be instantiated to take di�erent values
(terms) from the underlying domain when solving goals in which they occur.
Typically, we do not use underscore (_) to start variable names, and we
use suggestive names that make the clauses easy to understand.
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Function Symbols
In reasonably complex domains, we cannot represent all objects simply by
constants, but need a more structured representation. For this we use
function symbols.
Example1: Consider Natural Numbers:

0, 1, 2, 3, 4, 5, . . .

This representation needs as many atoms as there are numbers (in�nite).
Let us introduce one unary function symbol s (for successor).
Using 0 and s we can construct all the numbers as follows

0, s(0), s(s(0)), s(s(s(0))), ...

In general we can write sn(0) to denote the natural number n.
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More Examples
We may want to represent all triples of numbers.
Using a function symbol tr that takes 3 arguments we can build all triples
tr(0,0,0), tr(s(0),0,s(s(0))),

tr(tr(0,0,0),0,0) ...

Note that tr need not have only constants as arguments
Example 3:
We may have structured information about songs like their: title, raga, tala
and composer.
A function symbol song taking 4 arguments can be used for this.
song(vatapi, hamsadvani, aadi, dikshitar)

song(brocheva, khamas, aadi, vasudevachar)

...
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Predicate Symbols (Relations)
A predicate symbol is somewhat like a function symbol. It has an arity
(number of arguments) and takes that many terms as arguments to
return a unit clause.
Example: plus has arity 3 (denoted plus/3).
Unit Clauses: plus(0,s(0),s(0)), plus(0,0,s(0))
Similarly double(X,Y) can mean Y = 2 * X.
Note: The di�erence is that while function symbols can be nested in terms
(example � s(s(0))), predicate symbols can occur only at the outermost
level and cannot be nested.
Question: We cannot write:

plus(0,plus(0,0,s(0)),0), why?
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Facts
A fact is a unit clause.
If p is a predicate symbol of arity n and t1, ..., tn are terms, then
p(t1, ... ,tn) is an unit clause.
To input this in as a Prolog program the �.� is also needed.
Examples:

cm_of(tn, jaya).

spoken_in(maha, marati).

title_of(song(Ttl,Raga,Tala,Comp), Ttl).
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Rules
A rule for a Prolog program is
head :- Body.

where head is a unit clause and Body is unit clauses separated by �,�
This is to be read as

IF Body THEN Head
Examples:
spoken_near(River, Lang) :-

flows_through(River, State),

spoken_in(State, Lang).

times(s(X),Y,Z) :-

times(X,Y,Z1),

add(Y,Z1,Z).

The intended meaning of the second rule above is:
IF (X times Y is Z1 AND Y plus Z1 is Z)
THEN s(X) times Y is Z.
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How Prolog answers goals
Given a Prolog program P and a goal G, what is an answer to the
goal?
1. G has no variables

• yes (if G is true/provable from P)
• no (otherwise)

2. G has variables
• Values for the variables in G that make it true
• no if G can never be true

Here �true� (�provable�) are used informally. This is the Declarative
Semantics (Meaning) of a Prolog program.
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Many answers to a goal
What if G has many solutions?
A complete interpreter is one that produces them all (if they are �nitely
many), or enumerates them (fairly) if there are in�nitely many.
But, in what order?
And how do Prolog interpreters actually do this?
This is the Procedural Semantics



Home Page
Title Page
Contents

JJ II

J I

Page 11 of 32
Go Back

Full Screen
Close
Quit

Prolog's Solution Mechanism
How does Prolog answer a query?
- Searches the program from Top To Bottom looking for a fact or a rule
that can be used.
- If a fact can be used, one answer can be generated.
- If the head of a rule �ts, then the body gives new subgoals which are
solved from Left To Right.
Note that each time we use a fact or rule we
- Use new copies with new varibles.
- Keep track of substitutions made in the variables of the goal to produce
the �nal answer.
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Example Program
Suppose program P had the following information about ragas and songs
in this order .
mela_raga(kharaharapriya).

mela_raga(mayamalavagoula).

same_family(kharaharapriya,sahana).

same_family(kharaharapriya,khamas).

same_family(mayamalavagoula,saveri).

same_family(R,R).

same_family(R1, R2) :- same_family(R2, R1).

song(giripai, sahana)

song(chakkani, kharaharapriya)

song(brocheva, khamas)

song(karikalaba, saveri)

song(merusamana, mayamalavagoula)

song(devadeva, mayamalavagoula)
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Example Program (ctd.)
And P has some facts and rules about which ragas and songs are liked by
some person.
likes(siva, saveri).

likes_song(Person, Song) :- song(Song, Raga),

likes(Person, Raga).

likes_song(Person, Song) :- likes(Person, Raga1),

song(Song, Raga2), same_family(Raga1, Raga2).

Goals
:- song(Name, mayamalavagoula).

:- song(Name, Raga).

:- likes_song(siva,X).
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Top-to-Bottom selection of

facts/rules
song(Name, mayamalavagoula) has two answers.
Name = merusamana;

Name = devadeva;

and they will be produced in this order.
Similarly, song(Name, Raga) has 6 answers and will be produced in this
order.
Name = giripai, Raga = sahana;

Name = chakkani, Raga = kharaharapriya;

Name = brocheva, Raga = khamas;

Name = karikalaba, Raga = saveri;

Name = merusamana, Raga = mayamalavagoula;

Name = devadeva, Raga = mayamalavagoula;
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Left-to-Right for Subgoals
Consider the goal likes_song(siva,X). From the declarative meaning
we know that there are 3 answers. But, will they all be produced? In what
order?
To solve this goal, two rules can be used. The �rst from top will be tried
�rst and all answers using this produced.
Then, the program will try the second rule and try to produce more answers.
Using the �rst rule, we get two subgoals
song(Song,Raga), likes(siva,Raga).

These will be tried left-to-right
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Procedural Semantics (ctd.)
The �rst answer for song(Song,Raga) is
Song = giripai, Raga = sahana

- Proceed to the remaining subgoal
likes(siva,Raga) with the value Raga = sahana. That is, we try to
solve the goal likes(siva, sahana).
- fails, as no fact or rule matches this.
- Produce next answer for song(Song, Raga)

Song = chakkani, Raga = kharaharapriya

- fail on new subgoal
likes(siva,kharaharapriya)

Continuing like this, we produce only one answer X = karikalaba for the
goal likes(siva,X) using the �rst matching rule.
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Solution Strategy (ctd.)
We now proceed to use the second rule for solving likes(siva,X).
This gives subgoals
likes(siva, Raga1), song(Song, Raga2),

same_family(Raga1, Raga2).

to be solved from left-to-right.
The �rst subgoal has only one answer Raga1 = saveri.
The �rst answer to second subgoal is again
Song = giripai, Raga2 = sahana

Now we proceed to the third subgoal
same_family(saveri,sahana)
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In�nite Loops!
To solve same_family(saveri, sahana),
the only rule usable is
same_family(R1, R2) :- same_family(R2, R1).

which produces the subgoal same_family(sahana, saveri)

To solve this, we use the same rule again and get back the goal
same_family(saveri, sahana).
And we are stuck in this loop!
1. How to �x the program to get all the answers for the query?
2. How to re-order goals in the body of rules?
3. How to re-order facts and rules to make the search better?
4. Draw in tree form the complete execution trace for sample goals.
It must be emphasized that the top-to-bottom and left-to-right choices are
not a must. They are chosen only for e�ciency.
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Natural Numbers
As seen earlier:
Constant: 0

Function: s (unary)

The following Prolog program de�nes what is a natural number.
is_nat(0).

is_nat(s(X)) :- is_nat(X).

What will be the solutions to the goal
is_nat(U).
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Simple Predicates
How to test if a number is even?
is_even(0).

is_even(s(s(X))) :- is_even(X).

No need for division!
Similarly can you de�ne
is_odd(X):- .....

is_multof_3(X):- ....
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Comparison Functions
How to compare numbers? Let is_less_equal(X,Y) mean

�X is less than or equal to Y�
How does the following work?
is_less_equal(0,X) :- is_nat(X).

is_less_equal(s(X),s(Y)) :- is_less_equal(X,Y).

Consider queries with:
- No variables (is_less_equal(s(s(0)), s(s(s(0))))).

- One variable (is_less_equal(s(s(0)),X)).
- Both variables (is_less_equal(U,V)).
Question: Is Prolog fair when enumerating answers?
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Simple Arithmetic
How to de�ne plus(X, Y, Z) to mean

� Z is the sum of X and Y�
plus(0,Y,Y).

plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

Try sample goals:
- No variables.
- 1, 2, 3 variables.
Don't we need to say:
plus(0,Y,Y) :- is_nat(Y).

Remember: there is no explicit typing in Prolog!
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Subtraction
How do we write the relation di�(X, Y, Z) to mean that:

�Z is X - Y.�
Method 1:
diff(X,0,X).

diff(s(X),s(Y),Z) :- diff(X,Y,Z).

Method 2:
diff(X,Y,Z) :- plus(Y,Z,X).

Questions: Are these the same?
Are we testing if Y is less-than X anywhere?
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Multiplication
How do we write times(X, Y, Z) to mean

�Z is the product of X and Y.�
Check this solution:
times(0,Y,0).

times(s(X),Y,Z):- times(X,Y,Z1), plus(Y,Z1,Z).

Again try all types of goals.
- No variables.
- 1, 2, 3 variables.
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Note about Prolog
The example of times shows how de�nitions written in Prolog which work
well in the �testing� mode (that is, queries with all arguments as ground
terms without varibles) do not behave as desired when some of the argu-
ments are changed to variables.
That is, even though Prolog does not give any wrong answers, it has the
following drawbacks:
- Answers not enumerated fairly.
- Prolog runs out of stack/heap and aborts.
- All answers enumerated but Prolog continues in an �in�nte loop�.
Using the times example all this behaviour can be observed
This �misbehaviour� of Prolog is because of the two �arbitrary� choices that
Prolog made:
- Top To Bottom in choosing rules/facts.
- Left To Right when solving goals.
for e�ciency reasons.
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Division
divides(X, Y) means

�Y is a factor of X�
Method 1:
divides(X,Y):- times(Y, U, X)

Method 2:
divides(0,Y).

divides(Y,Y).

divides(X,Y):- plus(Y,U,X), divides(U,Y).

Questions: Which is better?
- Do we need the second fact in Method 2?
- How do they work on di�erent queries?
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Remainder
mod(X,Y,Z) means

�On dividing X by Y we get Z as the remainder�
mod(X,Y,X):- is_less(X,Y).

mod(X,Y,Z):- plus(Y,U,X), mod(U,Y,Z).

Compare this with the �divides� predicate.
Similarly can you write �quotient� predicate?
How to do this using the �times� predicate?
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GCD computation
gcd(X, Y, Z) means

�Z is the greatest common divisor of X and Y�
gcd(0,X,X) :- is_gt(X,0) % To avoid gcd(0,0,0)

gcd(X,Y,Ans) :- mod(X,Y,Z), gcd(Y,Z,Ans).

Exercise: Trace some sample goals. How to do this using the �times�
predicate?
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Homework
Try the following.
factorial(0) = 1

factorial(n+1) = (n+1) * factorial(n)

ackermann(0,N) = N + 1.

ackermann(M,0) = ackermann(M-1, 1).

ackermann(M+1,N+1) =

ackermann(M, ackermann(M+1, N))

fib(0) = 1.

fib(1) = 1.

fib(n+2) = fib(n+1) + fib(n).


