CS2006 Lecture 10

Prolog- Lists and Recursion

G. Sivakumar
Computer Science Department
[IT Bombay
siva@iitb.ac.in
http://www.cse.iitb.ac.in/~siva

Tue, Jan 21, 2003

Plan for Lecture 10
e Lists in Prolog

e Recursive Definitions

iy

Contents

) AN gy
"'\-

‘ -
=)
=

&
3
I I =

Representing Structured Data

In the simple database-like example, constants like
jaya, kerala, ganga, hindi,

sufficed to denote data-objects.
For numbers, we used

0, s(X)

a unary function symbol “s" for successor.
Lists are built using a binary operator and are very useful in representing
structured data.

Lists in Prolog

Examples:
[Cromrere | [Empty List
E [a] Singleton List
[a,Db] Two element List
[comems | [a,b,a] Three element List

That is, Lists are represented in Prolog simply by sqaure brackets with
>] -

elements of the list separated by commas.
]

Note: Lists can be nested: [a, [a,b], c] has 3 elements.

Diagrams for Lists

Similar to tree notation for terms.
Example: [a,d,e]

————— - []

| | |

a d e

Example: [[b,e],a,[c,d]]

————————— T

| |

| a |
——.--[] -—-.-[1

How to Add elements to Lists

Elements can be added only to the front (Head) of a list.

__ Home Prge_ | Prolog uses the symbol “|" with the meaning:
[New-First | 0ld-List]
[e |
Examples:
T - If L = [b,c,d] then
I [a | L] = [a,b,c,d]
- If L = [b,c,d] then
] [[a] | L] = [[al, b, c, d]

- If L = [[bl,c,d] then
[a | L] = [a, [b], c, d]

Exercise: Draw diagrams for these.

More about List Constructor

Really “|" is like a binary function symbol. Instead of writing

| (argl, arg?)

_ TitlePage | as Prolog syntax insists, we use for convenience
. [argl | arg2]

“1" need not be used only when for adding elements to lists.
It is very useful in describing patterns when stating facts and rules in a

e
Prolog Program.
]

Double-Headers!

Consider lists like
[a, a, b] [[a,b], [a,b]l, c, d, e]
[e, e, [f]]

How can we define a predicate dbh (X) in a Prolog Program to mean that:
"X is a list with the first two elements same”
- Cannot write down (infinitely) many facts one for each such list.

. - Can be done with a single fact in the Program.
]

Double-Header (Answer)

Let the Program have only 1 fact
dbh([X | [X | Rest]]).

__ Home Page_|

_ TitlePage | What happens when we ask the query:
dbh([a,a,b,c]).

_ Contemss_|

The query can be unified with the fact in the program by changing
X = a, Rest = [b,c]

Exercise: Try out the diagrams.

What about a query like:

?7- dbh([b,a,c]).
There is no way to unify this with the fact in the program.

_ Title Page | So Prolog answers no.

What about the following queries?

dbh ([1).

dbh([a]) .
D dbh([[c],[c], d, el).
o]

Identifying Lists that are Not

e | Doubletons
E Suppose we wish to write a predicate
_ contens_|

ndb (X)

that checks that "X is not a list with exactly two elements.”
BN Can you explain, why the following program works?
ndb([]) .
] ndb ([X]) .
ndb([X | [Y | [Z | Rest]l]]).

Why can we not write the third fact as:
ndb([X | [Y | Rest 11).

Lists of Same Length

How can we write a predicate to check if two lists have same number of
elements.
That is, we want the following facts to be true.

slength([a,b,c],[a,a,a]).
slength([[al]l, [cl).

One solution:

slength([],[]).
slenght ([X | Restofl], [Y | Restof2]) :-
slength(Restofl, Restof2).

Question: How will you read second rule in English?

Structural Recursion

It is very important that the previous example (slength) is understood
thoroughly by the student.

This is a typical pattern of how Prolog programs are written:

- Base case

- Inductive case

and the structural recursion (on the data-type) needs explaining.

Why are these two rules enough? Will it answer correctly for all queries
now? Tracing execution on a few sample goals will be very illustrative now.

problems in C or Pascal

&
[romarsge |
[e |
[comems |
e
> Students should also be constantly reminded of how they would solve such
T
| cocee |
EE
| oo |
[T

Execution trace

slength([a,b,c], [d,e,f])
| Rule can be used with
| X = a, Restofl = [b,c]

__ Home Poge |
I | Y =d, Restof2 = [e,f]
_ Comenss |

slength([b,c], [e,f])
| * New copy of rule is used *

R | Rule can be used with
| X = b, Restofl = [c]
R | Y = e, Restof2 = [f]
slength([c], [f])
. | * New copy of rule is used *
s | | Rule can be used with
| X = ¢, Restofl = []
_ Full screen | | Y = f, Restof2 = []
slength([], [1)
_ oo |
_ o |

*¥*xx Glven as fact **x

Another Execution trace

slength([a,b,c], [d,e,f,gl)
| Rule can be used with
| X = a, Restofl = [b,c]

tHomepoge|
_ rerue | | Y =d, Restof2 = [e,f,g]
__ conens_|

slength([b,c], [e,f,gl)
| * New copy of rule is used *
RS | Rule can be used with
| X = b, Restofl = [c]
R | Y = e, Restof2 = [f,g]
slength([c], [f,gl)
L | * New copy of rule is used x
 oma | | Rule can be used with
| X = ¢, Restofl = []
s | | Y = £, Restof2 = [g]
slength([], [g])
| = | * No rule applies! Fail. *
N

Length of a list

Let the predicate len(List, N) mean that “There are N elements in List.”
That is the following facts are true.

len([a,b,c], s(s(s(0)))).

len([e],s(0)).

How will you code this as a:
- Prolog program
- C or Pascal program

Solution to Length of List

/* base case */
len([],0).

/* inductive case */
len([X|Rest], s(N)) :-
len(Rest, N).

Ll The inductive rule can be read in English as:
]

“If the length of Rest is N, then the length adding X to Rest is the
successor of N.”

We can actually compute with this.
The query 1len([a,b],Ans) should give:
Ans = s(s(0)) as an answer.

Trace of Length Query

execution

I len([a,b], Ans).
e | | Rule applies making

| X1 = a, Restl = [b]
 cons_| | Ans = s(N1)
len([b],N1).
N | % New copy of rule.

| Variable names changed. *
. | Rule applies with
Puge 70100 | | X2 = Db, Rest = []

| N1 = s(N2)
_ Goback | len([],N2).

| Given fact makes N2 = 0
I Goal solved.

Composing the subsitutions
e for variables we get
aw | Ans = s(N1) = s(s(N2)) = s(s(0))

Food for Thought

Now that we have written a way to compute the length of a list, compare

__ Home Prge_ | this solution to check if two list have the same length with the previous
one.
I len([],0).
_ len([XIRest], S(N))I—
len(Rest, N).

R
slength(Listl, List2):-
o] len(List1,N),
len(List2,N).

Which do you prefer?

More Problems to 1ry

member (X, List) means X is present in List"

_ Home Page | sublist (L1, L2) means “L1 is a sublist of L2"
flatform(L1, L2) means L2 is a flat version of L1"
[Mréera] Examples:
= flatform([[al, [b]l,c], [a,b,c]).
flatform([[a, [bl], cl], [a,b,c]).
_ >]
]

