
Home Page
Title Page
Contents

JJ II

J I

Page 1 of 100
Go Back

Full Screen
Close
Quit

CS206 Lecture 10
Prolog- Lists and Recursion

G. Sivakumar
Computer Science Department

IIT Bombay
siva@iitb.ac.in

http://www.cse.iitb.ac.in/∼siva
Tue, Jan 21, 2003

Plan for Lecture 10
• Lists in Prolog
• Recursive De�nitions

Home Page
Title Page
Contents

JJ II

J I

Page 2 of 100
Go Back

Full Screen
Close
Quit

Representing Structured Data
In the simple database-like example, constants like
jaya, kerala, ganga, hindi, ...

su�ced to denote data-objects.
For numbers, we used
0, s(X)

a unary function symbol �s� for successor.
Lists are built using a binary operator and are very useful in representing
structured data.

Home Page
Title Page
Contents

JJ II

J I

Page 3 of 100
Go Back

Full Screen
Close
Quit

Lists in Prolog
Examples:
[] Empty List

[a] Singleton List

[a,b] Two element List

[a,b,a] Three element List

That is, Lists are represented in Prolog simply by sqaure brackets with
elements of the list separated by commas.
Note: Lists can be nested: [a, [a,b], c] has 3 elements.

Home Page
Title Page
Contents

JJ II

J I

Page 4 of 100
Go Back

Full Screen
Close
Quit

Diagrams for Lists
Similar to tree notation for terms.
Example: [a,d,e]
.---.---.---[]

| | |

a d e

Example: [[b,e],a,[c,d]]
.---------.--.---[]

| | |

| a |

.--.--[] .--.-[]

| | | |

b e c d

Home Page
Title Page
Contents

JJ II

J I

Page 5 of 100
Go Back

Full Screen
Close
Quit

How to Add elements to Lists
Elements can be added only to the front (Head) of a list.
Prolog uses the symbol �|� with the meaning:

[New-First | Old-List]

Examples:
- If L = [b,c,d] then

[a | L] = [a,b,c,d]

- If L = [b,c,d] then

[[a] | L] = [[a], b, c, d]

- If L = [[b],c,d] then

[a | L] = [a, [b], c, d]

Exercise: Draw diagrams for these.

Home Page
Title Page
Contents

JJ II

J I

Page 6 of 100
Go Back

Full Screen
Close
Quit

More about List Constructor
Really �|� is like a binary function symbol. Instead of writing

|(arg1, arg2)

as Prolog syntax insists, we use for convenience
[arg1 | arg2]

�|� need not be used only when for adding elements to lists.
It is very useful in describing patterns when stating facts and rules in a
Prolog Program.

Home Page
Title Page
Contents

JJ II

J I

Page 7 of 100
Go Back

Full Screen
Close
Quit

Double-Headers!
Consider lists like
[a, a, b] [[a,b], [a,b], c, d, e]

[e, e, [f]]

How can we de�ne a predicate dbh(X) in a Prolog Program to mean that:
�X is a list with the �rst two elements same�
- Cannot write down (in�nitely) many facts one for each such list.
- Can be done with a single fact in the Program.

Home Page
Title Page
Contents

JJ II

J I

Page 8 of 100
Go Back

Full Screen
Close
Quit

Double-Header (Answer)
Let the Program have only 1 fact
dbh([X | [X | Rest]]).

What happens when we ask the query:
dbh([a,a,b,c]).

The query can be uni�ed with the fact in the program by changing
X = a, Rest = [b,c]

Exercise: Try out the diagrams.

Home Page
Title Page
Contents

JJ II

J I

Page 9 of 100
Go Back

Full Screen
Close
Quit

What about a query like:
?- dbh([b,a,c]).

There is no way to unify this with the fact in the program.
So Prolog answers no.
What about the following queries?
dbh([]).

dbh([a]).

dbh([[c],[c], d, e]).

Home Page
Title Page
Contents

JJ II

J I

Page 10 of 100
Go Back

Full Screen
Close
Quit

Identifying Lists that are Not

Doubletons
Suppose we wish to write a predicate
ndb(X)

that checks that �X is not a list with exactly two elements.�
Can you explain, why the following program works?
ndb([]).

ndb([X]).

ndb([X | [Y | [Z | Rest]]]).

Why can we not write the third fact as:
ndb([X | [Y | Rest]]).

Home Page
Title Page
Contents

JJ II

J I

Page 11 of 100
Go Back

Full Screen
Close
Quit

Lists of Same Length
How can we write a predicate to check if two lists have same number of
elements.
That is, we want the following facts to be true.
slength([a,b,c],[a,a,a]).

slength([[a]], [c]).

...

One solution:
slength([],[]).

slenght([X | Restof1], [Y | Restof2]) :-

slength(Restof1, Restof2).

Question: How will you read second rule in English?

Home Page
Title Page
Contents

JJ II

J I

Page 12 of 100
Go Back

Full Screen
Close
Quit

Structural Recursion
It is very important that the previous example (slength) is understood
thoroughly by the student.
This is a typical pattern of how Prolog programs are written:
- Base case
- Inductive case
and the structural recursion (on the data-type) needs explaining.
Why are these two rules enough? Will it answer correctly for all queries
now? Tracing execution on a few sample goals will be very illustrative now.
Students should also be constantly reminded of how they would solve such
problems in C or Pascal.

Home Page
Title Page
Contents

JJ II

J I

Page 13 of 100
Go Back

Full Screen
Close
Quit

Execution trace
slength([a,b,c], [d,e,f])

| Rule can be used with

| X = a, Restof1 = [b,c]

| Y = d, Restof2 = [e,f]

slength([b,c], [e,f])

| * New copy of rule is used *

| Rule can be used with

| X = b, Restof1 = [c]

| Y = e, Restof2 = [f]

slength([c], [f])

| * New copy of rule is used *

| Rule can be used with

| X = c, Restof1 = []

| Y = f, Restof2 = []

slength([],[])

*** Given as fact ***

Home Page
Title Page
Contents

JJ II

J I

Page 14 of 100
Go Back

Full Screen
Close
Quit

Another Execution trace
slength([a,b,c], [d,e,f,g])

| Rule can be used with

| X = a, Restof1 = [b,c]

| Y = d, Restof2 = [e,f,g]

slength([b,c], [e,f,g])

| * New copy of rule is used *

| Rule can be used with

| X = b, Restof1 = [c]

| Y = e, Restof2 = [f,g]

slength([c], [f,g])

| * New copy of rule is used *

| Rule can be used with

| X = c, Restof1 = []

| Y = f, Restof2 = [g]

slength([],[g])

* No rule applies! Fail. *

Home Page
Title Page
Contents

JJ II

J I

Page 15 of 100
Go Back

Full Screen
Close
Quit

Length of a list
Let the predicate len(List, N) mean that �There are N elements in List.�
That is the following facts are true.
len([a,b,c], s(s(s(0)))).

len([e],s(0)).

How will you code this as a:
- Prolog program
- C or Pascal program

Home Page
Title Page
Contents

JJ II

J I

Page 16 of 100
Go Back

Full Screen
Close
Quit

Solution to Length of List
/* base case */

len([],0).

/* inductive case */

len([X|Rest], s(N)) :-

len(Rest, N).

The inductive rule can be read in English as:
�If the length of Rest is N, then the length adding X to Rest is the
successor of N.�

We can actually compute with this.
The query len([a,b],Ans) should give:
Ans = s(s(0)) as an answer.

Home Page
Title Page
Contents

JJ II

J I

Page 17 of 100
Go Back

Full Screen
Close
Quit

Trace of Length Query

execution
len([a,b], Ans).

| Rule applies making

| X1 = a, Rest1 = [b]

| Ans = s(N1)

len([b],N1).

| * New copy of rule.

| Variable names changed. *

| Rule applies with

| X2 = b, Rest = []

| N1 = s(N2)

len([],N2).

| Given fact makes N2 = 0

Goal solved.

Composing the subsitutions

for variables we get

Ans = s(N1) = s(s(N2)) = s(s(0))

Home Page
Title Page
Contents

JJ II

J I

Page 18 of 100
Go Back

Full Screen
Close
Quit

Food for Thought
Now that we have written a way to compute the length of a list, compare
this solution to check if two list have the same length with the previous
one.
len([],0).

len([X|Rest], s(N)):-

len(Rest, N).

slength(List1, List2):-

len(List1,N),

len(List2,N).

Which do you prefer?

Home Page
Title Page
Contents

JJ II

J I

Page 19 of 100
Go Back

Full Screen
Close
Quit

More Problems to Try
member(X, List) means �X is present in List�
sublist(L1, L2) means �L1 is a sublist of L2�
flatform(L1, L2) means �L2 is a �at version of L1�
Examples:
flatform([[a],[b],c], [a,b,c]).

flatform([[a, [b]], c], [a,b,c]).

