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CS206 Lecture 11
Prolog Built-in Functions

G. Sivakumar
Computer Science Department

IIT Bombay
siva@iitb.ac.in

http://www.cse.iitb.ac.in/∼siva

Thu, Jan 23, 2003

Plan for Lecture 11
•More Prolog Examples (Lists and Numbers)
• Built-in Functions
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Numbers
Simple inductive de�nitions.
natnum(0).

natnum(s(X)) :- natnum(X).

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,X,0).

mult(s(X),Y,Z) :- mult(X,Y,Z1), add(Y,Z1,Z).

power(X,0,s(0)).

power(X,s(Y),Ans) :- power(X,Y,A), mult(A,X,Ans).
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Execution Trace
Goal with multiple answers enumerated.
| ?- add(X,Y,s(s(s(0)))).

X = 0

Y = s(s(s(0))) ? ;

X = s(0)

Y = s(s(0)) ? ;

X = s(s(0))

Y = s(0) ? ;

X = s(s(s(0)))

Y = 0 ? ;

no

| ?-
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Prolog's Compuation Tree
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Another Example

| ?- mult(X,Y,s(s(0))).

X = s(0)

Y = s(s(0)) ? ;

X = s(s(0))

Y = s(0) ? ;

Fatal Error: global stack overflow

(size: 8193 Kb, environment variable used: GLOBALSZ)

What happened?
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In�nite Computation Trees
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Back to Satan-Cantor Puzzle
How to implement the following fair enumerations?
| ?- pairs(Ans).

Ans = [0,0] ? ;

Ans = [0,s(0)] ? ;

Ans = [s(0),0] ? ;

Ans = [0,s(s(0))] ? ;

Ans = [s(0),s(0)] ? ;

Ans = [s(s(0)),0] ? ;

Ans = [0,s(s(s(0)))] ? ;

Ans = [s(0),s(s(0))] ? ;

Ans = [s(s(0)),s(0)] ?

yes
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Triples
| ?- triples(Ans).

Ans = [0,0,0] ? ;

Ans = [0,0,s(0)] ? ;

Ans = [0,s(0),0] ? ;

Ans = [s(0),0,0] ? ;

Ans = [0,0,s(s(0))] ? ;

Ans = [0,s(0),s(0)] ? ;

Ans = [0,s(s(0)),0] ? ;

Ans = [s(0),0,s(0)] ? ;

Ans = [s(0),s(0),0] ? ;

Ans = [s(s(0)),0,0] ? ;

Ans = [0,0,s(s(s(0)))] ?

yes
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Solution
One rule is enough!
pairs([X,Y]) :- natnum(N), add(X, Y, N).

triples([X,Y,Z]) :- natnum(N),

add(X,N1,N),

add(Y,Z,N1).

Trace these goals and understand their computational trees.
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Bounded Enumeration
Part of next assignment is to implement the following.
| ?- enum_from_to(s(0),s(s(s(0))),Ans).

Ans = s(0) ? ;

Ans = s(s(0)) ? ;

Ans = s(s(s(0))) ? ;

no

| ?- pairsupto(s(s(0)),Ans).

Ans = [0,0] ? ;

Ans = [0,s(0)] ? ;

Ans = [s(0),0] ? ;

Ans = [0,s(s(0))] ? ;

Ans = [s(0),s(0)] ? ;

Ans = [s(s(0)),0] ? ;

no

Must Stop after enumerating all answers.
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Some List Operations
Appending and Reversal.
app([],X,X).

app([U | V], X, [U | W]) :- app(V,X,W).

rev([],[]).

rev([A|X], Ans) :- rev(X, A1),

app(A1, [A], Ans).
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Permutation

| ?- perm([a,b,c],Ans).

Ans = [a,b,c] ? ;

Ans = [b,a,c] ? ;

Ans = [b,c,a] ? ;

Ans = [a,c,b] ? ;

Ans = [c,a,b] ? ;

Ans = [c,b,a] ? ;

no

One solution given in next slide. It does not halt when invoked as
perm(Ans,[a,b,c]).
Fix that!
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Permutation Solution
/* erase(X,Y,Z) means

Z is Y with one occurrence of X removed */

erase(X,[X|Y],Y).

erase(X,[Y|Z],[Y|Z1]) :- erase(X,Z,Z1).

/* perm(L1,L2) means

L2 is a permutation of L1 */

perm([],[]).

perm([A | R], X) :- perm(R,X1),

erase(A,X,X1).
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Built-in Functions
Prolog provides built-in functions for several reasons although it is Turing-
complete even without them.
1. E�ciency

Why do arithmetic in unary notation, when we have fast arithmetic-
logic units on computers?

2. Convenience
Rather than write every function ourselves tediously, some standard
ones are provided.

3. Expressive power
Some extra (not pure logic) constructs are provided to make it easier
to write programs.
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Arithmetic Functions
Prolog does not interpret +, ∗ and so on specially except in special predi-
cates.
Thus, if we write naively
add(X,Y,Z) :- Z = X + Y.

and give the query add(0,0,Ans) we will get back
Z = 0 + 0

as though + was just any in�x operator.
To force evaluation this must be written using is.
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is Predicate
If we write
add(X,Y,Z) :- Z is X + Y.

Now + is actually evaluated and for the query add(2,3,Z) we do get
Z = 5

as the only answer.
Caution: Queries must use only numbers as �rst two arguments.
calling add(X,2,5) will give a system error!
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Other Arithmetic Functions
1. X - Y (subtraction)
2. X * Y (multiplication)
3. X / Y (division)
4. X mod Y (remainder)
5. - X (unary minus)
6. �oor, exp, square, sin, ...
They must be used with the is predicate as follows: Z is X * Y. X, Y
must be arithmetic expressions evaluating to a number.
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Comparison Operators
When X and Y are bound to numbers the following built in predicates work
as expected.
Caution: Both X and Y must be ground
1. X < Y
2. X > Y
3. X =< Y
4. X >= Y
5. X =

= Y (not equal)
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Typing Operators
The following built in functions are also very useful.
• integer(X)
tests if X is an integer. Similarly,

• real(X), �oat(X), number(X)
• var(X)
checks if X is currently an unbound variable. Similarly,

• nonvar(X), atomic(X), structure(X)
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Example
Counters using Built-in Functions.
/* simple counter. goes on for ever 0 1 2 3 4 ... */

ctr(0).

ctr(X) :- ctr(Y), X is Y + 1.

/* bounded counter. enumerates 0,1,2,3,...,N */

bounded_ctr(X,Bound) :- ct_des(X1,Bound),

X is Bound - X1.

ct_des(N,N).

ct_des(X,N) :- N > 0, N1 is N - 1, ct_des(X,N1).
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Insertion Sort of a List of

Numbers
/* To sort a list, sort its tail, then

insert its head in the right position. */

isort([Head|Tail],Result) :-

isort(Tail,SortedTail),

insert(Head,SortedTail,Result).

isort([],[]).

/* To insert an item into the correct position

in a sorted list: Put it at the beginning

if it should precede the first element;

otherwise go down the list until a position

is found where this is the case. */

insert(X,[Y|Tail],[X,Y|Tail]) :-

X =< Y.

insert(X,[Y|Tail],[Y|Z]) :-

X > Y, insert(X,Tail,Z).

insert(X,[],[X]).
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Problems for Next Lecture
Think about the following problems.
1. Coin-Change

Given unlimited coins of some denominations (eg. 25,10,1), how to
make change for some amount (58)?

2. Knight-Walk
Given a starting square (i,j) on chessboard, how to generate all walks
of length n.

3. P235 numbers
Find all numbers (up to a bound) which have only 2, 3 or 5 as prime
factors. Example such numbers: 36, 50.


