
Home Page
Title Page
Contents

JJ II

J I

Page 1 of 22
Go Back

Full Screen
Close
Quit

CS206 Lecture 11
Prolog Built-in Functions

G. Sivakumar
Computer Science Department

IIT Bombay
siva@iitb.ac.in

http://www.cse.iitb.ac.in/∼siva

Thu, Jan 23, 2003

Plan for Lecture 11
•More Prolog Examples (Lists and Numbers)
• Built-in Functions

Home Page
Title Page
Contents

JJ II

J I

Page 2 of 22
Go Back

Full Screen
Close
Quit

Numbers
Simple inductive de�nitions.
natnum(0).

natnum(s(X)) :- natnum(X).

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,X,0).

mult(s(X),Y,Z) :- mult(X,Y,Z1), add(Y,Z1,Z).

power(X,0,s(0)).

power(X,s(Y),Ans) :- power(X,Y,A), mult(A,X,Ans).

Home Page
Title Page
Contents

JJ II

J I

Page 3 of 22
Go Back

Full Screen
Close
Quit

Execution Trace
Goal with multiple answers enumerated.
| ?- add(X,Y,s(s(s(0)))).

X = 0

Y = s(s(s(0))) ? ;

X = s(0)

Y = s(s(0)) ? ;

X = s(s(0))

Y = s(0) ? ;

X = s(s(s(0)))

Y = 0 ? ;

no

| ?-

Home Page
Title Page
Contents

JJ II

J I

Page 4 of 22
Go Back

Full Screen
Close
Quit

Prolog's Compuation Tree

Home Page
Title Page
Contents

JJ II

J I

Page 5 of 22
Go Back

Full Screen
Close
Quit

Another Example

| ?- mult(X,Y,s(s(0))).

X = s(0)

Y = s(s(0)) ? ;

X = s(s(0))

Y = s(0) ? ;

Fatal Error: global stack overflow

(size: 8193 Kb, environment variable used: GLOBALSZ)

What happened?

Home Page
Title Page
Contents

JJ II

J I

Page 6 of 22
Go Back

Full Screen
Close
Quit

In�nite Computation Trees

Home Page
Title Page
Contents

JJ II

J I

Page 7 of 22
Go Back

Full Screen
Close
Quit

Back to Satan-Cantor Puzzle
How to implement the following fair enumerations?
| ?- pairs(Ans).

Ans = [0,0] ? ;

Ans = [0,s(0)] ? ;

Ans = [s(0),0] ? ;

Ans = [0,s(s(0))] ? ;

Ans = [s(0),s(0)] ? ;

Ans = [s(s(0)),0] ? ;

Ans = [0,s(s(s(0)))] ? ;

Ans = [s(0),s(s(0))] ? ;

Ans = [s(s(0)),s(0)] ?

yes

Home Page
Title Page
Contents

JJ II

J I

Page 8 of 22
Go Back

Full Screen
Close
Quit

Triples
| ?- triples(Ans).

Ans = [0,0,0] ? ;

Ans = [0,0,s(0)] ? ;

Ans = [0,s(0),0] ? ;

Ans = [s(0),0,0] ? ;

Ans = [0,0,s(s(0))] ? ;

Ans = [0,s(0),s(0)] ? ;

Ans = [0,s(s(0)),0] ? ;

Ans = [s(0),0,s(0)] ? ;

Ans = [s(0),s(0),0] ? ;

Ans = [s(s(0)),0,0] ? ;

Ans = [0,0,s(s(s(0)))] ?

yes

Home Page
Title Page
Contents

JJ II

J I

Page 9 of 22
Go Back

Full Screen
Close
Quit

Solution
One rule is enough!
pairs([X,Y]) :- natnum(N), add(X, Y, N).

triples([X,Y,Z]) :- natnum(N),

add(X,N1,N),

add(Y,Z,N1).

Trace these goals and understand their computational trees.

Home Page
Title Page
Contents

JJ II

J I

Page 10 of 22
Go Back

Full Screen
Close
Quit

Bounded Enumeration
Part of next assignment is to implement the following.
| ?- enum_from_to(s(0),s(s(s(0))),Ans).

Ans = s(0) ? ;

Ans = s(s(0)) ? ;

Ans = s(s(s(0))) ? ;

no

| ?- pairsupto(s(s(0)),Ans).

Ans = [0,0] ? ;

Ans = [0,s(0)] ? ;

Ans = [s(0),0] ? ;

Ans = [0,s(s(0))] ? ;

Ans = [s(0),s(0)] ? ;

Ans = [s(s(0)),0] ? ;

no

Must Stop after enumerating all answers.

Home Page
Title Page
Contents

JJ II

J I

Page 11 of 22
Go Back

Full Screen
Close
Quit

Some List Operations
Appending and Reversal.
app([],X,X).

app([U | V], X, [U | W]) :- app(V,X,W).

rev([],[]).

rev([A|X], Ans) :- rev(X, A1),

app(A1, [A], Ans).

Home Page
Title Page
Contents

JJ II

J I

Page 12 of 22
Go Back

Full Screen
Close
Quit

Permutation

| ?- perm([a,b,c],Ans).

Ans = [a,b,c] ? ;

Ans = [b,a,c] ? ;

Ans = [b,c,a] ? ;

Ans = [a,c,b] ? ;

Ans = [c,a,b] ? ;

Ans = [c,b,a] ? ;

no

One solution given in next slide. It does not halt when invoked as
perm(Ans,[a,b,c]).
Fix that!

Home Page
Title Page
Contents

JJ II

J I

Page 13 of 22
Go Back

Full Screen
Close
Quit

Permutation Solution
/* erase(X,Y,Z) means

Z is Y with one occurrence of X removed */

erase(X,[X|Y],Y).

erase(X,[Y|Z],[Y|Z1]) :- erase(X,Z,Z1).

/* perm(L1,L2) means

L2 is a permutation of L1 */

perm([],[]).

perm([A | R], X) :- perm(R,X1),

erase(A,X,X1).

Home Page
Title Page
Contents

JJ II

J I

Page 14 of 22
Go Back

Full Screen
Close
Quit

Built-in Functions
Prolog provides built-in functions for several reasons although it is Turing-
complete even without them.
1. E�ciency

Why do arithmetic in unary notation, when we have fast arithmetic-
logic units on computers?

2. Convenience
Rather than write every function ourselves tediously, some standard
ones are provided.

3. Expressive power
Some extra (not pure logic) constructs are provided to make it easier
to write programs.

Home Page
Title Page
Contents

JJ II

J I

Page 15 of 22
Go Back

Full Screen
Close
Quit

Arithmetic Functions
Prolog does not interpret +, ∗ and so on specially except in special predi-
cates.
Thus, if we write naively
add(X,Y,Z) :- Z = X + Y.

and give the query add(0,0,Ans) we will get back
Z = 0 + 0

as though + was just any in�x operator.
To force evaluation this must be written using is.

Home Page
Title Page
Contents

JJ II

J I

Page 16 of 22
Go Back

Full Screen
Close
Quit

is Predicate
If we write
add(X,Y,Z) :- Z is X + Y.

Now + is actually evaluated and for the query add(2,3,Z) we do get
Z = 5

as the only answer.
Caution: Queries must use only numbers as �rst two arguments.
calling add(X,2,5) will give a system error!

Home Page
Title Page
Contents

JJ II

J I

Page 17 of 22
Go Back

Full Screen
Close
Quit

Other Arithmetic Functions
1. X - Y (subtraction)
2. X * Y (multiplication)
3. X / Y (division)
4. X mod Y (remainder)
5. - X (unary minus)
6. �oor, exp, square, sin, ...
They must be used with the is predicate as follows: Z is X * Y. X, Y
must be arithmetic expressions evaluating to a number.

Home Page
Title Page
Contents

JJ II

J I

Page 18 of 22
Go Back

Full Screen
Close
Quit

Comparison Operators
When X and Y are bound to numbers the following built in predicates work
as expected.
Caution: Both X and Y must be ground
1. X < Y
2. X > Y
3. X =< Y
4. X >= Y
5. X =

= Y (not equal)

Home Page
Title Page
Contents

JJ II

J I

Page 19 of 22
Go Back

Full Screen
Close
Quit

Typing Operators
The following built in functions are also very useful.
• integer(X)
tests if X is an integer. Similarly,

• real(X), �oat(X), number(X)
• var(X)
checks if X is currently an unbound variable. Similarly,

• nonvar(X), atomic(X), structure(X)

Home Page
Title Page
Contents

JJ II

J I

Page 20 of 22
Go Back

Full Screen
Close
Quit

Example
Counters using Built-in Functions.
/* simple counter. goes on for ever 0 1 2 3 4 ... */

ctr(0).

ctr(X) :- ctr(Y), X is Y + 1.

/* bounded counter. enumerates 0,1,2,3,...,N */

bounded_ctr(X,Bound) :- ct_des(X1,Bound),

X is Bound - X1.

ct_des(N,N).

ct_des(X,N) :- N > 0, N1 is N - 1, ct_des(X,N1).

Home Page
Title Page
Contents

JJ II

J I

Page 21 of 22
Go Back

Full Screen
Close
Quit

Insertion Sort of a List of

Numbers
/* To sort a list, sort its tail, then

insert its head in the right position. */

isort([Head|Tail],Result) :-

isort(Tail,SortedTail),

insert(Head,SortedTail,Result).

isort([],[]).

/* To insert an item into the correct position

in a sorted list: Put it at the beginning

if it should precede the first element;

otherwise go down the list until a position

is found where this is the case. */

insert(X,[Y|Tail],[X,Y|Tail]) :-

X =< Y.

insert(X,[Y|Tail],[Y|Z]) :-

X > Y, insert(X,Tail,Z).

insert(X,[],[X]).

Home Page
Title Page
Contents

JJ II

J I

Page 22 of 22
Go Back

Full Screen
Close
Quit

Problems for Next Lecture
Think about the following problems.
1. Coin-Change

Given unlimited coins of some denominations (eg. 25,10,1), how to
make change for some amount (58)?

2. Knight-Walk
Given a starting square (i,j) on chessboard, how to generate all walks
of length n.

3. P235 numbers
Find all numbers (up to a bound) which have only 2, 3 or 5 as prime
factors. Example such numbers: 36, 50.

