
Home Page
Title Page
Contents

JJ II

J I

Page 1 of 15
Go Back

Full Screen
Close
Quit

CS206 Lecture 13
Equation Logic and Term Rewriting

G. Sivakumar
Computer Science Department

IIT Bombay
siva@iitb.ac.in

http://www.cse.iitb.ac.in/∼siva
Tue, Jan 28, 2003

Plan for Lecture 13
•Overview of Equational Logic
• Rewrite Systems

Home Page
Title Page
Contents

JJ II

J I

Page 2 of 15
Go Back

Full Screen
Close
Quit

Equational Logic
Standard example (Group Theory)

0 + x = x

−(x) + x = 0

(x + y) + z = x + (y + z)

Equational logic (�replace equals by equals�)
0 = 0 + x = (−0 + 0) + x = − 0 + (0 + x) = − 0 + x

Validity: Is −0 = 0? Is −(−(x)) = x? (for all x)?
Satis�ability: Is there x such that x + x = 0?
Formal de�nition of term, substitution, matching, uni�cation in
future lectures!
We can give an �e�cient� decision procedure for validity and a semi-
decision procedure for satis�abilty if we can �nd a convergent (canon-
ical) rewrite system equivalent to the above equations.

Home Page
Title Page
Contents

JJ II

J I

Page 3 of 15
Go Back

Full Screen
Close
Quit

Rewrite Systems
A rule is an �oriented� equation (one-way replacement).
Numbers are built from constructors (0, s) and some functions
+, ∗, fact, gcd are de�ned as follows.

0 + x → x

s(x) + y → s(x + y)

0 ∗ x → 0

s(x) ∗ y → y + (x ∗ y)

fact(0) → s(0)

fact(s(x)) → s(x) ∗ fact(x)

gcd(0, x) → x

gcd(x, x + y) → gcd(x, y)

Derivations and Normal Forms
s(0) + (0 ∗ s(0))→s(0) + 0→s(0 + 0)→s(0)

Home Page
Title Page
Contents

JJ II

J I

Page 4 of 15
Go Back

Full Screen
Close
Quit

Equational Programming
(First-order) Functional Programming
• Evaluate fact(s2(0) ∗ s3(0))

•Matching is the parameter-passing mechanism for applying rules.
• No backtracking if de�nition is con�uent.

Logic Programing
• Solve x ∗ y = s4(0)

• Enumerate all answers: {x 7→ s(0), y 7→ s4(0)}, {x 7→ s2(0), y 7→
s2(0)}, ...

• Uni�cation is the parameter passing mechanism.
• Backtracking needed for completeness!

�E�cent� methods for the above are possible when the rewrite system has
useful properties of termination and con�uence.

Home Page
Title Page
Contents

JJ II

J I

Page 5 of 15
Go Back

Full Screen
Close
Quit

Problems with GCD de�nition
gcd(0, x) → x

gcd(x, x + y) → gcd(x, y)

Is de�nition of gcd complete?
• Can we simplify gcd(s2(0), s4(0))?
• We need matching modulo +

• How about gcd(s4(0), s2(0))?
• We need commutativity of gcd.

Home Page
Title Page
Contents

JJ II

J I

Page 6 of 15
Go Back

Full Screen
Close
Quit

Another De�niton
First, we de�ne diff (x, y) = |x− y| the absolute value of the di�erence
as follows.

diff(x, 0) → x

diff(0, x) → x

diff(s(x), s(y)) → diff(x, y)

Next, we de�ne smin(x, y) = 1 + min(x, y) as follows.
smin(x, 0) → s(0)

smin(0, x) → s(0)

smin(s(x), s(y)) → s(smin(x, y))

Using these two de�nitions one can now write gcd(x, y) as follows.
gcd(x, 0) → x

gcd(0, x) → x

gcd(s(x), s(y)) → gcd(diff(x, y), smin(x, y))

Home Page
Title Page
Contents

JJ II

J I

Page 7 of 15
Go Back

Full Screen
Close
Quit

Sample Derivation
A sample derivation using the rules above to compute gcd(4, 2) = 2 is
shown below.

gcd(s4(0), s2(0))

→gcd(diff(s3(0), s(0)), smin(s3(0), s(0)))

→∗gcd(s2(0), s2(0))

→∗gcd(0, s2(0))→s2(0)

Home Page
Title Page
Contents

JJ II

J I

Page 8 of 15
Go Back

Full Screen
Close
Quit

Interesting Questions
1. Is there any term gcd(m,n) that has more than one normal form?
2. Is the de�nition su�ciently complete? That is, does every term of

the form gcd(m, n) where m, n evaluate to a normal form which is a
natural number?

3. Can we prove properties of gcd like commutativity gcd(x, y) =

gcd(y, x) for any natural numbers x, y?
4. Is there any term gcd(m, n) for which there is some in�nite derivation

sequence gcd(m,n)→t1→t2...?

Home Page
Title Page
Contents

JJ II

J I

Page 9 of 15
Go Back

Full Screen
Close
Quit

Termination Puzzle

Home Page
Title Page
Contents

JJ II

J I

Page 10 of 15
Go Back

Full Screen
Close
Quit

Termination
A rewrite system R = {li → ri} is terminating if there is no term t1 such
that an in�nte chain

t1 → t2 → ...

of rewrite steps is possible using R.
How to prove termination?
•Well-founded orderings on terms.
• Simpli�cation Orderings

� Subterm Property (u[t] > t)
� Monotonicity Property (t > s implies u[t] > u[s])

• Stability under substitutions
(t > s implies for all σ, tσ > sσ)

Other desirable properties (totality on ground terms, maximality). Design-
ing such orderings is quite challenging.

Home Page
Title Page
Contents

JJ II

J I

Page 11 of 15
Go Back

Full Screen
Close
Quit

Unique Normal Form

(Con�uence)
Consider some rules for Propositional Logic.

x ∨ 0 → x

x ∧ 1 → x

x ∧ ¬(x) → 0

x ∨ (y ∧ z) → (x ∨ y) ∧ (x ∨ z)

Clausal form (Disjunctive Normal Form).
The formula x∨(y∧¬(y)) has two normal forms x and (x∨y)∧(x∨¬(y)).
Resolution based methods will resolve the two clauses in (x ∨ y) ∧ (x ∨
¬(y)).
How to �x for rewriting?
Add this as a new rule?
(x ∨ y) ∧ (x ∨ ¬(y)) → x

No, More problems!

Home Page
Title Page
Contents

JJ II

J I

Page 12 of 15
Go Back

Full Screen
Close
Quit

Data Types using Rewrite

Systems
Quite easy to model and reason about many data types. nil and · con-
structors for list, empty and push constructors for stack.

top(push(x, y)) → x

pop(push(x, y)) → y

append(nil, Z) → Z

append(X · Y, Z) → X · append(Y, Z)

rev(nil) → nil

rev(X · Y) → append(rev(Y), X · nil)

Are properties such as associativity of append or rev(rev(X)) = X

valid? (equational proofs exist?).

Home Page
Title Page
Contents

JJ II

J I

Page 13 of 15
Go Back

Full Screen
Close
Quit

Inductive Properties and

Proofs
Example of series summation

ssum(0) → 0

ssum(s(x)) → s(x) + ssum(x)

Can we prove
s2(0) ∗ ssum(x) = s(x) ∗ x

Two methods
• Structural Induction using cover sets
• Inductionless Induction
Add �inductive theorem� as a rule and check if we can generate a
contradiction (equality between di�erent constructors such as 0 =

1).

Home Page
Title Page
Contents

JJ II

J I

Page 14 of 15
Go Back

Full Screen
Close
Quit

Associativity and

Commutativity
Many useful functions are AC.

x + y → y + x

(x + y) + z → x + (y + z)

We cannot add the �rst as explicit rule (why?)
Also, we do want the rule x∗x → x to apply to (p+(q+r))∗ (r+(q+p))

if + is AC.
Use �attening (p + q + r) (messes-up orderings!) and AC-matching.

Home Page
Title Page
Contents

JJ II

J I

Page 15 of 15
Go Back

Full Screen
Close
Quit

Conditional Rules
Many functions are not easy to write using unconditional rules. Consider
< over integers (constructors 0, s, p).

spx → x

psx → x

s(x) < s(y) → x < y

p(x) < p(y) → x < y

0 < 0 → false

0 < s(0) → true

0 < s(x) → true if 0 < x = true

Not complete. But rest of rules are similar.
Note: Last rule above cannot be applied without doing a (recursive) va-
lidity proof!
Proving termination and con�uence quite a challenge (my Ph.D. thesis was
in this area).
Challenge: Do this without conditional rules.

