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Plan for Lecture 13
e Overview of Equational Logic

e Rewrite Systems
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Equational Logic

Standard example (Group Theory)

O+ = x
—(z) +x
(z+y)+z = z+ (y+2)

I
o

Equational logic (“replace equals by equals”)
0 =0+z = (-04+0)+z = —0+(04+2z) = —0+=z

Validity: Is —0 =07 Is —(—(z)) = 27 (for all x)?

Satisfiability: s there x such that x +x = 07

Formal definition of term, substitution, matching, unification in
future lectures!

We can give an “efficient” decision procedure for validity and a semi-
decision procedure for satisfiabilty if we can find a convergent (canon-
ical) rewrite system equivalent to the above equations.



Rewrite Systems

A rule is an “oriented” equation (one-way replacement).

| Home Page | Numbers are built from constructors (0,s) and some functions
. +, %, fact, ged are defined as follows.
O+z — «x
EEEE sr)+y — slz+y)
-- Oxz — 0
s(x)*y — y—|—(x>|<y)
] fact(0) — 5(0)
fact(s(z)) —  s(z)* fact(z)
ged(0,z) —
ged(z,x +y) — ged(z,y)

Derivations and Normal Forms

s(0) + (0% 5(0))—s(0) + 0—s(0 + 0)—s(0)



Equational Programming

(First-order) Functional Programming
e Evaluate fact(s%(0) * s3(0))
e Matching is the parameter-passing mechanism for applying rules.
e No backtracking if definition is confluent.
Logic Programing
e Solve x x y = s%(0)

e Enumerate all answers: {z — s(0),y — s*0)}, {x — s*0),y —
s*(0)}, ...

e Unification is the parameter passing mechanism.
e Backtracking needed for completeness!

"Efficent” methods for the above are possible when the rewrite system has
useful properties of termination and confluence.



Problems with GCD definition

gcd(0,2) —
ged(z,x +y) — ged(z,y)

Is definition of gcd complete?
e Can we simplify ged(s*(0), s%(0))?
e \We need matching modulo +
e How about ged(s*(0), s*(0))?

e \We need commutativity of gcd.



Another Definiton

First, we define dif f(x,y) = |z — y| the absolute value of the difference

_ Home Page | as follows.
diff(z,0) — «x
_ Tiepoge | diff(0,z) — =
diff(s(x),s(y)) — diff(z,y)

o] Next, we define smin(z,y) =1+ min(z,y) as follows.
I smin(z,0) — s(0)
e smin(0,x) — s(0)

smin(s(z),s(y)) — s(smin(z,y))



Sample Derivation

A sample derivation using the rules above to compute gcd(4,2) = 2 is
shown below.

ged(s*(0), s*(0))
—ged(diff(s3(0), s(0)), smin(s*(0), s(0)))
—7ged(s*(0), s(0))
—"ged(0,5°(0))—5%(0)




Interesting Questions

1. Is there any term gcd(m, n) that has more than one normal form?

2. Is the definition sufficiently complete? That is, does every term of

natural number?

T
| Titerage | the form ged(m,n) where m,n evaluate to a normal form which is a
L 3. Can we prove properties of ged like commutativity ged(z,y) =

4. Is there any term gcd(m,n) for which there is some infinite derivation

RN gcd(y, x) for any natural numbers z, y?
R

sequence ged(m, n)—t;—ts...7



Termination Puzzle

Ravana’s Heads




Termination

A rewrite system R = {l; — r;} is terminating if there is no term ¢; such
that an infinte chain

tl — t2 = oac

of rewrite steps is possible using R.
How to prove termination?

e Well-founded orderings on terms.
e Simplification Orderings

— Subterm Property (u[t] > t)

— Monotonicity Property (¢ > s implies u[t] > uls])
e Stability under substitutions

(t > s implies for all o, to > so)

Other desirable properties (totality on ground terms, maximality). Design-
ing such orderings is quite challenging.



Unique Normal Form

— (Confluence)
E Consider some rules for Propositional Logic.
V0 — =z
_ Comenss | S
RS si=E) = U
zV(yANz) — (VY A(zVz2)
]

Clausal form (Disjunctive Normal Form).
The formula 2V (y A—(y)) has two normal forms x and (zVy)A(zV=(y)).
Resolution based methods will resolve the two clauses in (x V y) A (x V

RN

S —(y)).

s | How to fix for rewriting?
| o= |

T

Add this as a new rule?
(zVy A(zV-(y) -
No, More problems!



Data Types using Rewrite

e | Systems
E Quite easy to model and reason about many data types. nil and - con-
[ comems |

structors for list, empty and push constructors for stack.

top(push(z,y)) — =
Ea pop(push(z,y)) — y
append(nil, Z2) — Z
] append(X - Y, Z) — X -append(Y, Z)
rev(nil) — mnil
rev(X -Y) — append(rev(Y), X - nil)

Are properties such as associativity of append or rev(rev(X)) = X

T
BTN
EEEE valid? (equational proofs exist?).
| = |
N



Inductive Properties and

Proofs

EE Example of series summation

ssum(0) — 0
ssum(s(x)) — s(x)+ ssum(x)
R Can we prove
e s7(0) x ssum(x) = s(z) *x x

Two methods
e Structural Induction using cover sets

e Inductionless Induction

Add “inductive theorem” as a rule and check if we can generate a
contradiction (equality between different constructors such as 0 =

1),



Associativity and

e (jOHﬂDIUtatTVﬂDf
EE Many useful functions are AC.
[ comems |

Tty — Yy+x
(z+y)+2z — z+(y+2)

T We cannot add the first as explicit rule (why?)
Also, we do want the rule zxx — x to apply to (p+(q+7))* (r+(g+p
R (p (g1 + 0+9)
if +is AC.
Use flattening (p + ¢ + ) (messes-up orderings!) and AC-matching.



Conditional Rules

Many functions are not easy to write using unconditional rules. Consider

__ Home Prge_ | < over integers (constructors 0, s, p).
| Terue | spr —
pST — X

_ S(ZU) < S(y) — << Y
s plx) <ply) — =<y

0<0 — false
e 0<s(0) — true

0<s(x) — true if 0<ax=true

RN

Not complete. But rest of rules are similar.
I Note: Last rule above cannot be applied without doing a (recursive) va-
i lidity proof!

Proving termination and confluence quite a challenge (my Ph.D. thesis was
| in this area).

Challenge: Do this without conditional rules.
T



