

CS206 Lecture 13 Equation Logic and Term Rewriting

G. Sivakumar Computer Science Department IIT Bombay siva@iitb.ac.in http://www.cse.iitb.ac.in/~siva

Tue, Jan 28, 2003

Plan for Lecture 13

- Overview of Equational Logic
- Rewrite Systems

Equational Logic

Standard example (Group Theory)

Equational logic ("replace equals by equals")

$$0 = 0 + x = (-0 + 0) + x = -0 + (0 + x) = -0 + x$$

Validity: |s -0 = 0? |s -(-(x)) = x? (for all x)? Satisfiability: |s there x such that x + x = 0? Formal definition of term, substitution, matching, unification in future lectures! We can give an "efficient" decision procedure for validity and a semidecision procedure for satisfiability if we can find a convergent (canon-

ical) rewrite system equivalent to the above equations.



Rewrite Systems

A rule is an "oriented" equation (one-way replacement). Numbers are built from constructors (0, s) and some functions +, *, fact, gcd are defined as follows.

Derivations and Normal Forms

g

 $s(0) + (0 * s(0)) \rightarrow s(0) + 0 \rightarrow s(0+0) \rightarrow s(0)$

Equational Programming

(First-order) Functional Programming

- $\bullet \; {\rm Evaluate} \; fact(s^2(0) * s^3(0))$
- \bullet $\mathbf{Matching}$ is the parameter-passing mechanism for applying rules.
- No backtracking if definition is **confluent**.

Logic Programing

- $\bullet \; {\rm Solve} \; x*y=s^4(0)$
- \bullet Enumerate all answers: $\{x \mapsto s(0), y \mapsto s^4(0)\}$, $\{x \mapsto s^2(0), y \mapsto s^2(0)\}$, …
- Unification is the parameter passing mechanism.
- Backtracking needed for completeness!

"Efficent" methods for the above are possible when the rewrite system has useful properties of termination and confluence.

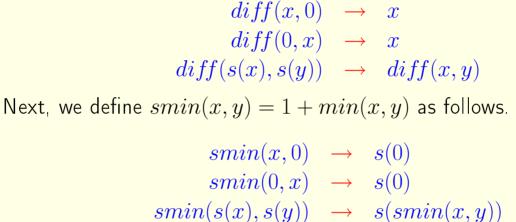
Problems with GCD definition

$$\begin{array}{rccc} gcd(0,x) & \to & x \\ gcd(x,x+y) & \to & gcd(x,y) \end{array}$$

- Is definition of \mathbf{gcd} complete?
 - Can we simplify $gcd(s^2(0), s^4(0))$?
 - \bullet We need matching modulo +
 - \bullet How about $gcd(s^4(0),s^2(0))?$
 - We need **commutativity** of gcd.

Another Definiton

First, we define diff(x,y) = |x-y| the absolute value of the difference as follows.



Using these two definitions one can now write gcd(x,y) as follows.

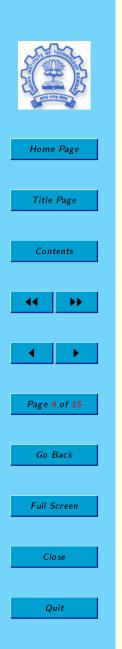
Sample Derivation

A sample $\mathit{derivation}$ using the rules above to compute $\mathit{gcd}(4,2)=2$ is shown below.

 $gcd(s^{4}(0), s^{2}(0))$ $\rightarrow gcd(diff(s^{3}(0), s(0)), smin(s^{3}(0), s(0)))$ $\rightarrow^{*}gcd(s^{2}(0), s^{2}(0))$ $\rightarrow^{*}gcd(0, s^{2}(0)) \rightarrow s^{2}(0)$

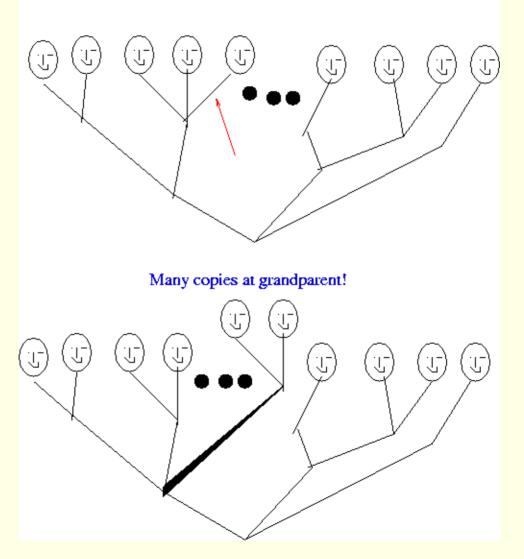
Interesting Questions

- 1. Is there any term $\gcd(m,n)$ that has more than one normal form?
- 2. Is the definition *sufficiently complete*? That is, does every term of the form gcd(m, n) where m, n evaluate to a normal form which is a natural number?
- 3. Can we prove properties of gcd like commutativity gcd(x,y)=gcd(y,x) for any natural numbers x,y?
- 4. Is there any term gcd(m, n) for which there is some infinite derivation sequence $gcd(m, n) \rightarrow t_1 \rightarrow t_2...?$



Termination Puzzle

Ravana's Heads



Termination

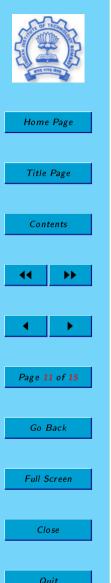
A rewrite system $\mathcal{R} = \{l_i \rightarrow r_i\}$ is terminating if there is no term t_1 such that an infinite chain

 $t_1 \rightarrow t_2 \rightarrow \dots$

of rewrite steps is possible using \mathcal{R} . How to prove termination?

- Well-founded orderings on terms.
- Simplification Orderings
 - Subterm Property (u[t] > t)
 - Monotonicity Property (t > s implies u[t] > u[s])
- **Stability** under substitutions
 - $(t>s \text{ implies for all } \sigma, t\sigma > s\sigma)$

Other desirable properties (totality on ground terms, maximality). Designing such orderings is quite challenging.



Unique Normal Form (Confluence)

Consider some rules for Propositional Logic.

 $x \lor 0 \rightarrow x$ $x \wedge 1 \rightarrow x$ $x \wedge \neg(x) \rightarrow 0$ $x \lor (y \land z) \quad \rightarrow \quad (x \lor y) \land (x \lor z)$

Clausal form (Disjunctive Normal Form).

The formula $x \lor (y \land \neg(y))$ has two normal forms x and $(x \lor y) \land (x \lor \neg(y))$. Resolution based methods will resolve the two clauses in $(x \lor y) \land (x \lor y)$ $\neg(y))$

How to fix for rewriting? Add this as a new rule? $(x \lor y) \land (x \lor \neg(y)) \to x$ No, More problems!

Quit

Data Types using Rewrite Systems

Quite easy to model and reason about many data types. nil and \cdot constructors for list, empty and push constructors for stack.

top(push(x,y))	\rightarrow	x
pop(push(x,y))	\rightarrow	y
append(nil, Z)	\rightarrow	Z
$append(X \cdot Y, Z)$	\rightarrow	$X \cdot append(Y, Z)$
rev(nil)	\rightarrow	nil
$rev(X \cdot Y)$	\rightarrow	$append(rev(Y), X \cdot nil)$

Are properties such as **associativity** of append or rev(rev(X)) = X valid? (equational proofs exist?).

Inductive Properties and Proofs

Example of series summation

$$\begin{array}{rrrr} ssum(0) & \to & 0\\ ssum(s(x)) & \to & s(x) + ssum(x) \end{array}$$

Can we prove

$$s^2(0)\ast ssum(x)=s(x)\ast x$$

Two methods

- ullet Structural Induction using cover sets
- Inductionless Induction

Add "inductive theorem" as a rule and check if we can generate a **contradiction** (equality between different constructors such as 0 = 1).

Associativity and Commutativity

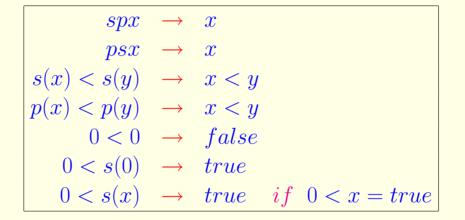
Many useful functions are AC.

We cannot add the first as explicit rule (why?) Also, we do want the rule $x * x \to x$ to apply to (p+(q+r))*(r+(q+p))if + is AC. Use flattening (p+q+r) (messes-up orderings!) and AC-matching.

Quit

Conditional Rules

Many functions are not easy to write using **unconditional** rules. Consider < over integers (constructors 0, s, p).



Not complete. But rest of rules are similar.

Note: Last rule above cannot be applied without doing a (recursive) validity proof!

Proving termination and confluence quite a challenge (my Ph.D. thesis was in this area).

Challenge: Do this without conditional rules.