

Title Page

Contents

Page 1 of 14

Go Back

Full Screen

Close

Quit

CS206 Lecture 14 Substitutions, Matching, Unification

G. Sivakumar

Computer Science Department
IIT Bombay
siva@iitb.ac.in
http://www.cse.iitb.ac.in/~siva

Thu, Jan 30, 2003

Plan for Lecture 13

- Substitutions
- Unification

Title Page

Contents

44 >>

→

Page 2 of 14

Go Back

Full Screen

Close

Quit

Terms

Consider t = s(x) + (y * s(0))

Term t (size 7, depth 3)

Title Page

Contents

→

Page 3 of 14

Go Back

Full Screen

Close

Quit

Positions and Subterms

Term t (size 7, depth 3)

t/2.2 = s(0) is a ground subterm.

$$Vars(t/1) = \{x\}$$

HomeWork

- Define **positions** in a term.
- ullet Algorithm to extract subterm t/λ at position λ in term t

Replacement

Home Page

Title Page

Contents

Page 4 of 14

Go Back

Full Screen

Replacement of a subterm t/λ in a term t at position λ by some other term t_1 is denoted by

 $t[t_1]_{\lambda}$

Close

 $t[0]_1 = 0 + (y * s(0))$

 $t[s(x)]_{2.1} = s(x) + (s(x) * s(0))$

Title Page

Contents

Page 5 of 14

Go Back

Full Screen

Close

Quit

Substitution

A substitution σ is a mapping from variables to terms.

$$\{x \mapsto 0, y \mapsto s(0), z \mapsto v\}$$

Domain of σ is the set of variables $\{x, y, z\}$.

Replacements (Range) of σ is the set of terms $\{0, s(0), v\}$

Title Page

Contents

Page 6 of 14

Go Back

Full Screen

Close

Quit

Applying a Substitution

Replace variables by their mapping.

Consider
$$t = s(x) + (y * s(0))$$

and
$$\sigma = \{x \mapsto 0, y \mapsto s(0), z \mapsto v\}$$
 Then $t\sigma = s(0) + (s(0) * s(0))$

replace every occurrence of every variable in the substitution by the term with which it is associated.

Title Page

Contents

Page 7 of 14

Go Back

Full Screen

Close

Quit

Parallel Replacement

Substitutions are applied in parallel. Consider

$$\sigma = \{x \mapsto y, y \mapsto s(0), z \mapsto v\}$$

applied to

should give s(y) + (s(0) * s(0))

If we replace in sequence (replace x first and then replace y) we will get wrong answer s(0) + (s(0) * s(0))

Title Page

Contents

← →

→

Page 8 of 14

Go Back

Full Screen

Close

Quit

Identity and Idempotent Substitution

We do not allow mapping a variable to itself $\{x \mapsto x\}$ explicitly in σ . It is the **default** for variables not in the **domain** of σ .

So, the **identity** substitution σ_{id} is the **empty** substitution $\sigma_{id} = \{\}$.

For any term $t\sigma_{id}=t$.

A substitution is idempotent (also *pure*) if and only if all replacements are free of the variables in the domain of the substitution. Otherwise, the substitution is impure.

$$\sigma = \{x \mapsto y, \ y \mapsto s(0), \ z \mapsto v\}$$

is impure (non-idempotent).

For **idempotent** substitutions applying in sequence or parallel gives same result.

Also for idempotent σ , we have $(t\sigma)\sigma=t\sigma$ (applying more than once is same as applying once only).

Title Page

Contents

Page 9 of 14

Go Back

Full Screen

Close

Quit

Composing Substitutions

Let

$$\sigma_1 = \{ x \mapsto 0, \ y \mapsto s(u), \ z \mapsto v \}$$

and

$$\sigma_2 = \{ u \mapsto 0, \ v \mapsto s(0) \}$$

and

$$t = f(x, y, z)$$

Then

$$t\sigma_1 = f(0, s(u), v)$$

$$(t\sigma_1)\sigma_2 = f(0, s(0), s(0))$$

If we define

$$\tau = \sigma_1 \circ \sigma_2 = \{x \mapsto 0, \ y \mapsto s(0), \ z \mapsto s(0), \ u \mapsto 0, \ v \mapsto s(0)\}$$

then $t\tau = f(0, s(0), s(0))$.

Title Page

Contents

Page 10 of 14

Go Back

Full Screen

Close

Quit

Composition of Substitutions

The composition of substitution σ and τ is the substitution (written $\sigma \circ \tau$ or simply $\sigma \tau$) obtained by

- ullet Applying au to the replacements in σ
- \bullet Adjoining to σ the pairs from τ with different variables.
- Deleting any assignments of variable to itself.

$$\sigma = \{x \mapsto 0, \ y \mapsto s(u), \ z \mapsto v, \ x_1 \mapsto y_1\}$$

$$\tau = \{u \mapsto 0, \ v \mapsto s(0), \ z \mapsto 0, \ y_1 \mapsto x_1\}$$

$$\sigma\tau = \{x \mapsto 0, \ y \mapsto s(0), \ z \mapsto s(0), \ u \mapsto 0, \ v \mapsto s(0)\}$$

Does composition preserve idempotence?

Title Page

Contents

Page 11 of 14

Go Back

Full Screen

Close

Quit

Composability

Definition: σ and τ are composable if and only if the variables in the domain of σ are no in the replacements of τ .

The following are not composable.

$$\sigma = \{x \mapsto 0, \ y \mapsto s(0)\}\$$

with

$$\tau = \{ u \mapsto x, \ v \mapsto s(0) \}$$

Homework

- The composition of composable idempotent substitutions is idempotent.
- Composition is associative.
- Composition has left and right identities.
- Composition is not commutative.

Title Page

Contents

Page 12 of 14

Go Back

Full Screen

Close

Quit

Matching

A (pattern) term t matches a (target) term s iff there is a substitution σ such that $t\sigma=s$.

Example

$$t = s(x) * y$$

matches

$$s = s(s(0)) * 0$$

using

$$\sigma = \{x \mapsto s(0), \ y \mapsto 0\}$$

Used for applying rules to compute normal forms in term rewriting systems.

Note: s can have variables. But, the $\mathbf{asymmetric}$ definition allows replacements only in the pattern term.

Title Page

Contents

→

Page 13 of 14

Go Back

Full Screen

Close

Quit

Unification

A term t unifies with another term s iff there is a substitution σ such that $t\sigma=s\sigma$

Note: Definition is symmetric. Can change variables in both terms.

Examples