CS200 Lecture 14
Substitutions, Matching, Unification

G. Sivakumar
Computer Science Department
[IT Bombay
siva@iitb.ac.in
http://www.cse.iitb.ac.in/~siva

Thu, Jan 30, 2003

Plan for Lecture 13
e Substitutions

e Unification

\ .

Q
o
S|
=
o
5
&
»n

Terms
Consider t = s(x) + (y * s(0))

Termt (size 7, depth 3)

*Eﬁ:/P;sition
Ground

Subterm f

Subterm
(size 4, depth 2)

/
T

Positions and Subterms

Term t (size 7, depth 3)

*E——;/Position
Ground

Subterm f

Subterm
(size 4, depth 2)
t/2.2 = s(0) is a ground subterm.
Vars(t/1) = {z}
HomeWork

e Define positions in a term.

e Algorithm to extract subterm ¢/\ at position A in term ¢

heplacement

Replacement of a subterm ¢/\ in a term ¢ at position A by some other
term t; is denoted by

tlt1]a
Termt (size 7, depth 3)

Ground
Subterm f

Subterm
(size 4, depth 2)

t[0]; = 0+ (y * s(0))

tls(z)]a1 = s(z) + (s(x) * 5(0))

Substitution

A substitution ¢ is a mapping from variables to terms.
{z+— 0,y — s(0),z— v}

Domain of ¢ is the set of variables {z,y, z}.
Replacements (Range) of o is the set of terms {0, s(0), v}

Applying a Substitution

Replace variables by their mapping.
Consider t = s(z) 4 (y * s(0))
Termt (size 7, depth 3)

*Eﬁ:/Position

Subterm f
Subterm
(size 4, depth 2)

and 0 = {x — 0,y — s(0), 2 — v}
Then to = s(0) + (s(0) * s(0))

replace every occurrence of every variable in the substitution by the
term with which it is associated.

Parallel Replacement

Substiutions are applied in parallel.
Consider
o ={z— y,y+ 5(0),2 — v}

applied to
Term t (size 7, depth 3)

*r———:/Position
Ground

Subterm f

Subterm
(size 4, depth 2)

should give s(y) + (s(0) * s(0))

If we replace in sequence (replace x first and then replace y) we will get

wrong answer s(0) + (s(0) * s(0))

Identity and ldempotent
Substitution

We do not allow mapping a variable to itself {x — x} explicitly in o. It is
the default for variables not in the domain of o.

So, the identity substitution ;4 is the empty substitution ;3 = {}.

For any term to;; = t.

A substitution is idempotent (also pure) if and only if all replacements are
free of the variables in the domain of the substitution. Otherwise, the
substitution is impure.

o={x—y, y— s(0), z+— v}

is impure (non-idempotent).

For idempotent substitutions applying in sequence or parallel gives same
result.

Also for idempotent o, we have (to)o = to (applying more than once is
same as applying once only).

Composing Substitutions

Let
oy ={x—0, y— s(u), z+— v}

and

gy ={u—0, v— s(0)}
and

t=f(z,y,2)
Then
top = f(O, S(U),U)

(to1)oz = f(0,5(0), s(0))

If we define

T=0100y={x+— 0, y+— 5(0), z+— s(0), u—0, v s(0)}

then t7 = f(0, s(0), s(0)).

Composition of Substitutions

The composition of substitution o and 7 is the substitution (written g o 7

or simply o7) obtained by

e Adjoining to ¢ the pairs from 7 with different variables.

| omo |
 reeree | e Applying 7 to the replacements in o
BEEE

e Deleting any assignments of variable to itself.

Lelf»]

g:{gjn—>0, y|—>s(u), 2=, 5131'—>y1}
L
7—:{u|—>07 vl—>8<0), 2z +— 0, y1'—>351}

or ={z+— 0, y— s(0), z+— 5(0), u— 0, v—s(0)}

Does composition preserve idempotence?

Composability

Definition: ¢ and 7 are composable if and only if the variables in the

__ Home Page_| domain of o are no in the replacements of 7.
The following are not composable.
[e |
o={z—0, y—s(0)}
[comems |
with
>]
T={urz, v— s0)}
]
Homework

e The composition of composable idempotent substitutions is idempo-
tent.

e Composition is associative.
e Composition has left and right identities.

e Composition is not commutative.

Matching

A (pattern) term ¢t matches a (target) term s iff there is a subsitution o

__ Home Prge_ | such that to = s.

Example
I t=s(x)*xy
_ Comtents | matches

s =5(s(0)) %0

>] .

using
] o ={z — s(0), y— 0}

Used for applying rules to compute normal forms in term rewriting
systems.

Note: s can have variables. But, the asymmetric definition allows re-
placements only in the pattern term.

Unification

A term t unifies with another term s iff there is a subsitution ¢ such that
to = so.
Note: Definition is symmetric. Can change variables in both terms.

Examples
Term 1 Term 2 Unifier
0 X {X — 0}
p(a, X) p(Y, b) {X—1b Y —a}l
o(f(X), 8(2) p(fa).Y) (X —a, Yo g(2))
p(f(X), 8(2)) p(f(a), Y) {X —a, Y = g(b), Z+— b}

Informal development today of algorithms for matching and unification.

