
Home Page
Title Page
Contents

JJ II

J I

Page 1 of 100
Go Back

Full Screen
Close
Quit

CS206 Lecture 16
Term Rewriting in Prolog

G. Sivakumar
Computer Science Department

IIT Bombay
siva@iitb.ac.in

http://www.cse.iitb.ac.in/∼siva
Thu, Feb 13, 2003

Plan for Lecture 17
• Extra-logical features of Prolog

� Examining �Types� and Structures
� Cuts (for controlling search)
� Negation

• Naive Rewriting using Prolog

Home Page
Title Page
Contents

JJ II

J I

Page 2 of 100
Go Back

Full Screen
Close
Quit

List to Set conversion
Suppose we wish to write a predicate setform(L,S) which means �S is
the set of elements in L� (no duplicates).
Naive attempt
setform([],[]).

setform([A|R],Ans) :- setform(R,Ans1),

ins(A,Ans1,Ans).

ins(A,[],[A]).

ins(A,[B|R],Ans) :- ?????

How to complete the de�nition of �ins�?
We need to check for �inequality� or �non-membership� i.e. some negative
property.
Prolog provides some �extra-logical� features to make life easy for program-
mer (although Prolog is Turing-complete without such features).

Home Page
Title Page
Contents

JJ II

J I

Page 3 of 100
Go Back

Full Screen
Close
Quit

Examining Structures
Prolog has several built-in predicates that allow us to examine structures.
Why?
• Symbolic computation (as opposed to numerical) is one of the areas
where Prolog can be used.

• Check the calling pattern in the body of a rule and behave accordingly.

Home Page
Title Page
Contents

JJ II

J I

Page 4 of 100
Go Back

Full Screen
Close
Quit

Var predicate
var(X)

Succeeds if X is currently uninstantiated (i.e. X is still a variable); otherwise
it fails.
Examples:

| ?- var(X).

yes

| ?- var([X]).

no

| ?- var(f(Y,Z)).

no

| ?- var((X)).

yes

Opposite is nonvar(X).

Home Page
Title Page
Contents

JJ II

J I

Page 5 of 100
Go Back

Full Screen
Close
Quit

Typical Usage
If we want to invert plus using regular numbers (not 0,s notation).
plus(X,Y,Z) :- nonvar(X), nonvar(Y),

Z is X + Y.

plus(X,Y,Z) :- nonvar(X), nonvar(Z),

Y is Z - X.

plus(X,Y,Z) :- nonvar(Z), nonvar(Y),

X is Z - Y.

We can call this plus with any two arguments instantiated and it will work!
But, above not su�cient to call with all three unbound and generate an-
swers. Or, only one variable bound.

Home Page
Title Page
Contents

JJ II

J I

Page 6 of 100
Go Back

Full Screen
Close
Quit

Other Type Predicates
• integer(X) Succeeds if X is currently instantiated to an integer; other-
wise it fails.

• real(X) Succeeds if X is currently instantiated to a �oating point num-
ber; otherwise it fails.

• number(X) Succeeds if X is currently instantiated to either an integer
or a �oating point number (real); otherwise it fails.

Home Page
Title Page
Contents

JJ II

J I

Page 7 of 100
Go Back

Full Screen
Close
Quit

Atomic structures
atom(X) checks if X is bound to a non-numeric constant.
atomic(X) checks if X is bound to a non-numeric constant or a number.
Examples:

| ?- atomic(10).

yes

| ?- atomic(p).

yes

| ?- atomic(h).

yes

| ?- atomic(h(X)).

no

| ?- atomic("foo").

no

| ?- atomic('foo').

yes

| ?- atomic(X).

no

| ?- atomic(X((Y))).

no

Home Page
Title Page
Contents

JJ II

J I

Page 8 of 100
Go Back

Full Screen
Close
Quit

Compound Structures
compound(X) Succeeds if X is currently instantiated to a compound term
(with arity greater that zero), i.e. to a nonvariable term that is not atomic;
otherwise it fails. Examples:

| ?- compound(1).

no

| ?- compound(foo(1,2,3)).

yes

| ?- compound([foo, bar]).

yes

| ?- compound("foo").

yes

| ?- compound('foo').

no

| ?- compound(f(a,b)).

yes

Home Page
Title Page
Contents

JJ II

J I

Page 9 of 100
Go Back

Full Screen
Close
Quit

Taking apart compound terms
functor(Term, Functor, Arity)

Succeeds if the functor of the Prolog term Term is Functor and the arity

(number of arguments) of Term is Arity. Examples:
| ?- functor(p(f(a),b,t), F, A).

F = p

A = 3

| ?- functor(T, foo, 3).

T = foo(_595708,_595712,_595716)

| ?- functor(foo, F, 0).

F = foo

| ?- functor("foo", F, A).

F = .

A = 2

Home Page
Title Page
Contents

JJ II

J I

Page 10 of 100
Go Back

Full Screen
Close
Quit

Picking out one argument
arg(Index, Term, Argument)

Uni�es Argument with the Indexth argument of Term, where the index is
taken to start at 1. Initially, Index must be instantiated to any integer
and Term to any non-variable Prolog term.
Examples:

| ?- arg(2, p(a,b), A).

A = b

| ?- arg(1, h(a,b), A).

A = a

| ?- arg(0, foo, A).

no

| ?- arg(2, [a,b,c], A).

A = [b,c]

Home Page
Title Page
Contents

JJ II

J I

Page 11 of 100
Go Back

Full Screen
Close
Quit

Copying Terms
copy(Term, Copy)

Makes a Copy of Term in which all variables have been replaced by brand
new variables which occur nowhere else. It can be very handy when writing
(meta-)interpreters for logic-based languages.
Examples:

| ?- copy_term(X, Y).

X = _598948

Y = _598904

| ?- copy_term(f(a,X), Y).

X = _598892

Y = f(a,_599112)

Home Page
Title Page
Contents

JJ II

J I

Page 12 of 100
Go Back

Full Screen
Close
Quit

Cuts and Negation
To control Backtracking
• Reorder rules
• Reorder clauses in the body of a rule

But is this enough? Consider some mutually exclusive rules
Suppose school uniforms are chosen as follows. If a child is in class 1-5,
then blue. If a child is in class 6-9, then red. If a child is in class 10-11,
then white.
We can code this as follows.
uniform(X,blue) :- class(X,Y), Y < 6.

uniform(X,red) :- class(X,Y), Y > 5, Y < 10.

uniform(X,white) :- class(X,Y), Y > 9.

Home Page
Title Page
Contents

JJ II

J I

Page 13 of 100
Go Back

Full Screen
Close
Quit

Unnecessary Search
Assume also
happy(Child) :- uniform(Child, Colour),

likes(Child, Colour).

likes(ramesh,red).

class(ramesh,4).

Try the goal happy(ramesh).
We get 2 subgoals,
uniform(ramesh,Colour), likes(ramesh, Colour)

Prolog will try all three clauses for uniform and will fail 3 times.
Search tree is unnecessarily big.

Home Page
Title Page
Contents

JJ II

J I

Page 14 of 100
Go Back

Full Screen
Close
Quit

Cuts to express determinism
Prolog allows programmer to improve such situations using cut denoted
by �!�
We write
happy(Child) :- uniform(Child, Colour), !,

likes(Child, Colour).

The meaning is that-
Once the clause uniform(Child,Colour) has given one answer, do not
try for any other answer.
Cut the choice points left for uniform and proceed to next clause.
We can do this, because we know uniform colour has only one answer since
clauses are mutually exclusive.

Home Page
Title Page
Contents

JJ II

J I

Page 15 of 100
Go Back

Full Screen
Close
Quit

Green Cuts
A cut as used above is a GREEN cut (or safe cut).
Removing the cut will not cause any problems.
Only make Prolog search unnecessarily in parts of the tree where there is
no answer. Red Cuts
Now that cut is provided, programmers may be tempted to use it as below.
Instead of writing
max(X,Y,X) :- X >= Y.

max(X,Y,Y) :- X < Y.

they may write
max(X,Y,X) :- X >= Y, !.

max(X,Y,Y).

reasoning that if �rst clause succeeds it is the only answer and we will never
backtrack to second. So, why do the test X < Y?
Is this �ne?

Home Page
Title Page
Contents

JJ II

J I

Page 16 of 100
Go Back

Full Screen
Close
Quit

Red Cuts (ctd.)
As long as max is called with only �rst two arguments instantiated this is
�ne. We will get only correct answers.
But, suppose we call as below, max(5,2,2)
This goal will succeed in the version with cut (why?) but not in the original
version.
Such cuts are called RED (or unsafe).
Should be used only when certain calling patterns are guaranteed.
ins(X,[],[X]).

ins(X,[B|R],[B|R]) :- member(X,[B|R]),!.

ins(X,[B|R],[X | [B | R]]).

is �ne provided we always call ins with �rst two arguments bound.

Home Page
Title Page
Contents

JJ II

J I

Page 17 of 100
Go Back

Full Screen
Close
Quit

De�nition of Cut
• Parent Goal
The goal that matched the head of the clause containing the cut.

• Solving a cut
When cut is encountered as a goal, it succeeds immediately.

• E�ect of cut
System commits to all choices made between the time the parent goal
was invoked and the time the cut was solved. That is, all remaning
alternatives between the parent goal and the cut are discarded.

Home Page
Title Page
Contents

JJ II

J I

Page 18 of 100
Go Back

Full Screen
Close
Quit

Cut (ctd.)
Consider the clause
H :- B1, B2, B3, !, B4, B5, B6.

If goal G matches H.
We solve B1, B2, B3 as usual (which gets solutions one at a time).
When we reach the !, we commit to this solution for B1,B2,B3 and will
not try any other answers for B1, B2, B3.
Further, G itself becomes committed to this choice and we will not try to
match G with the head of any other clause.

Home Page
Title Page
Contents

JJ II

J I

Page 19 of 100
Go Back

Full Screen
Close
Quit

Illustrative example for cut
C :- P, Q, R, !, S, T, U.

C :- V.

A :- B, C, D.

When solving A, we will try C after getting the �rst
solution for B.
When solving C, when we get the �rst solution for P,Q,R, we commit to
this and do not examine other choices for P,Q,R. We only return all the
answers obtained from S,T,U. We also do not try C :- V.
Cut is invisible to A and all choices for B will be tried.

Home Page
Title Page
Contents

JJ II

J I

Page 20 of 100
Go Back

Full Screen
Close
Quit

Negation
Cuts provdide a weak form of negation to Prolog.
Consider not de�ned as follows.
not(Goal) :- Goal, !, fail.

not(Goal).

To check if a Goal cannot be satis�ed, we try the Goal.
If we �nd one answer, we cut and fail.
If we �nd no answer (the search tree is �nite and all branches fail) then
not(Goal) succeeds.

Home Page
Title Page
Contents

JJ II

J I

Page 21 of 100
Go Back

Full Screen
Close
Quit

Example usage of not
Consider member de�ned as follows.
member(X,[X|Y]).

member(X,[U|V]) :- member(X,V).

Using this, we can write a insertion predicate to a set (no duplicates).
ins(A,[],[A]) :- !.

ins(A,B,[A|B]) :- not(member(A,B)).

Trace ins(2, [3,4,5], Ans).

Home Page
Title Page
Contents

JJ II

J I

Page 22 of 100
Go Back

Full Screen
Close
Quit

Other Features
• Global variables/state
assert, retract

• Collecting solutions together
setof, bagof, findall

All these features to be used with care.
Makes performance better.
Strategy: First understand the logic and write a correct program.
Then, use �extra-logical� features carefully, if necessary, to improve perfor-
mace.

