
Home Page
Title Page
Contents

JJ II

J I

Page 1 of 18
Go Back

Full Screen
Close
Quit

CS206 Lecture 18
Term Rewriting Code

G. Sivakumar
Computer Science Department

IIT Bombay
siva@iitb.ac.in

http://www.cse.iitb.ac.in/∼siva
Fri, Feb 14, 2003

Plan for Lecture 18
• Normalization Strategies
• Prolog code
• Java code



Home Page
Title Page
Contents

JJ II

J I

Page 2 of 18
Go Back

Full Screen
Close
Quit

Indexing Positions/Subterms

• A position λ identi�es a subterm
• In above example t/2.2 = s(0) ∗ 0

• Notation for replacing a subterm t′ in a term t by another term u

t[λ← u]

• Example:
t[2← 0] = (s(0) ∗ s(0)) + 0



Home Page
Title Page
Contents

JJ II

J I

Page 3 of 18
Go Back

Full Screen
Close
Quit

Redex
Let t be a term and R a set of rewrite rules.
A redex in t is a position λ in t where some rule of R can apply. That is,
λ is a redex in t if there is a rule l→ r in R and a substituion σ such that
lσ == t/λ.

has 3 redexes� 1, 2 and 2.2



Home Page
Title Page
Contents

JJ II

J I

Page 4 of 18
Go Back

Full Screen
Close
Quit

Outermost and Innermost
A redex r in t is outermost if no pre�x of r is also a redex. (Informally:
no superterm can be reduced)
A redex r in t is innerrmost if there is no position r1 in t with r as pre�x
such that r1 is also a redex. (Informally: no subterm can be reduced)

In
2 is an outermost redex.
2.2 is an innermost redex.
1 is both innermost and outermost redex.



Home Page
Title Page
Contents

JJ II

J I

Page 5 of 18
Go Back

Full Screen
Close
Quit

Rewriting Strategy
Let t be a term and R a set of rules.
A reduction sequence

t→ t1 → t2 → ...

is outermost (innermost) if each at step in the sequence a rule is applied
at an outermost (innermost) redex.
A mixed strategy is one which is neither outermost nor innermost.
Which strategy is best?
Implement all 3 strategies.



Home Page
Title Page
Contents

JJ II

J I

Page 6 of 18
Go Back

Full Screen
Close
Quit

Term Rewriting in Java
Prolog code easier to understand?
• Separate Classes for

� Term
� Subst
� Rule

• With appropriate methods
A term is an object which has methods to do things such as
• convert itself to string (for printing)
• applying a substitution on itself
• checking equality with another term
• matching with another term
• normalizing itself using some rules



Home Page
Title Page
Contents

JJ II

J I

Page 7 of 18
Go Back

Full Screen
Close
Quit

Vectors versus Arrays
Arrays are �xed size.
Not good when we do not know arity (number of arguments of a term)
or we wish to input unknown number of rules etc.
Vectors are good for this.
Java has built-in Vector class which can hold a dynamic list of objects.
Useful methods.
• Vector rules = new Vector();
• rules.addElement(anyObject);
• rules.elementAt(i); //starts from 0
• int nrules = rules.size();



Home Page
Title Page
Contents

JJ II

J I

Page 8 of 18
Go Back

Full Screen
Close
Quit

Type Casting
A vector is a list of Objects. So, when adding to a vector we can add
anything.
When retrieving elements from a Vector we have to typecast it properly.
Example- let arguments of a term be stored in a vector. Then,

for (int i = 0;

i < t.args.size(); i++){

Term targ = (Term) t.args.elementAt(i);

<< do something with targ >>

}



Home Page
Title Page
Contents

JJ II

J I

Page 9 of 18
Go Back

Full Screen
Close
Quit

Term.java
public class Term {

// the 2 important fields of any term

public String opvarname;

public Vector args;

// The Term constructor below builds

// from a String such as "f(x,0,g(y,z))"

public Term(String str){

... }

//methods

public boolean isvar()

public boolean isconst()

// compare with another term.

public boolean equals(Term t)

// replace one of the top level arguments in term

// to make a new term. e.g. f(a,b).rplarg(1,b) gives f(b,b)

public Term rplarg(int j, Term narg)

// make a new copy with varnames suffixed by a number.

public Term copy(int vnum)

// apply a substitution to a term

public Term applySubst(Subst sigma)

... And many more ...

}



Home Page
Title Page
Contents

JJ II

J I

Page 10 of 18
Go Back

Full Screen
Close
Quit

Parsing a term from a String
No error checking below.
public Term(String str){

args = new Vector(); // initialize to null Vector.

int i1 = str.indexOf('(');

if (i1 == -1){

// this is a constant or a variable

opvarname = str;}

else {

// this is f(t1,..,tn) where n is arity of f

opvarname = str.substring(0, i1);

int paren = 1;

while (paren > 0) {

for (int pos = i1 + 1; pos <= str.length(); pos++){

char ch = str.charAt(pos);

if (ch == '(')

paren++;

else if (ch == ')'){

paren--;

if (paren == 0){

args.addElement(new Term(str.substring(i1 + 1, pos)));

i1 = pos;

break;}

}

else if (str.charAt(pos) == ','){

if (paren == 1){

args.addElement(new Term(str.substring(i1 + 1, pos)));

i1 = pos;

break;}

}}}}}



Home Page
Title Page
Contents

JJ II

J I

Page 11 of 18
Go Back

Full Screen
Close
Quit

Replacing one of the

arguments
// replace one of the top level arguments in term

// to make a new term. e.g. f(a,b).rplarg(1,b) gives f(b,b)

// no error checking done for now.

public Term rplarg(int j, Term narg){

String tmp = this.opvarname + "(";

for (int i = 0; i < args.size(); i++){

if (i == j) {tmp = tmp + narg + ",";}

else{ Term targ = (Term) args.elementAt(i);

tmp = tmp + targ + ",";}}

//remove extra , at end and add )

return new Term(tmp.substring(0,tmp.length()-1) + ")");}



Home Page
Title Page
Contents

JJ II

J I

Page 12 of 18
Go Back

Full Screen
Close
Quit

Representing Substitutions
A Vector of bindings!
// need binding <var, term> class first

class Bind{

public String var;

public Term term;

Bind(String v, Term t){

var = v; term = t;} }

// a substitution is a Vector of bindings

// with various methods for adding binding, composing etc.

// how to represent failed subst?

// we use a boolean field isValid

public class Subst{

public boolean isValid = false;

public Vector sigma;

// initialize to ID substitution

Subst(){

sigma = new Vector();

isValid = true;

}



Home Page
Title Page
Contents

JJ II

J I

Page 13 of 18
Go Back

Full Screen
Close
Quit

Substitution Methods
public Subst appendBind(String v, Term t){

// no checking here. simply add at end. ok for matching

// and when we have normalized already

sigma.addElement(new Bind(v,t));

return this;

}

public boolean isBound(String var)

public Term getBind(String v)

public String toString()



Home Page
Title Page
Contents

JJ II

J I

Page 14 of 18
Go Back

Full Screen
Close
Quit

Method for matching
public Subst match(Term t){

// returns a sigma such that t matches this term.

Subst idSub = new Subst();

return this.match1(t,idSub);}

public Subst match1(Term t, Subst sigma){

// assumed that t shares no variable with this term.

if (t.isvar()){

return sigma.appendBind(t.opvarname, this);}

else if (t.opvarname.equals(this.opvarname)){

for (int i = 0; i < t.args.size(); i++){

Term targ = (Term) t.args.elementAt(i);

Term sarg = (Term) this.args.elementAt(i);

sigma = sarg.match1(targ.applySubst(sigma), sigma);

if (! sigma.isValid){break;}}}

else{sigma.isValid=false;};

return sigma;}

Uni�cation code similar, but more complex.
Must compose substs instead of appending!



Home Page
Title Page
Contents

JJ II

J I

Page 15 of 18
Go Back

Full Screen
Close
Quit

Representing Rules
public class Rule{

// a rule has lhs and rhs

public Term lhs;

public Term rhs;

// may wish to add other fields like rulenumber later

// a constructor for parsing a string and making a rule

Rule(String str){

// assumed to have l -> r with -> as separator

// a method to change names of vars in a rule

public Rule copy(int num){

// read a set of rules from a file. A static method.

public static Vector readRules(String fname)

// print rules on terminal

public static void writeRules(Vector Rules){



Home Page
Title Page
Contents

JJ II

J I

Page 16 of 18
Go Back

Full Screen
Close
Quit

Applying a rule
// a method that tries to use this rule on input term once.

public Term rwany(Term t){

// this rewrites the term ONCE if possible anywhere using this rule.

// return t itself if no rewriting is possible anywhere.

Subst sig = t.match(lhs);

if (sig.isValid){

Term t1 = rhs.applySubst(sig);

System.out.println(" Rule: " + this +

" rewrites " + t + " --> " + t1);

return t1;}

else if (t.isvar() | t.isconst())

return t;

else{

for (int i = 0; i < t.args.size(); i++){

Term targ = (Term) t.args.elementAt(i);

Term t1 = this.rwany(targ);

if (!(t1.equals(targ)))

{return t.rplarg(i,t1);}};

return t;}}



Home Page
Title Page
Contents

JJ II

J I

Page 17 of 18
Go Back

Full Screen
Close
Quit

Computing Normal form
A method on a term.
// normalize the term using a set of rules.

public Term norm(Vector rules){

for (int i = 0; i < rules.size(); i++){

Rule rule = (Rule) rules.elementAt(i);

Term ans = rule.rwany(this);

if (! ans.equals(this)){

return ans.norm(rules);}};

return this; // if no rule applies at all

}



Home Page
Title Page
Contents

JJ II

J I

Page 18 of 18
Go Back

Full Screen
Close
Quit

Putting it all together
Main.java
import java.io.*;

import java.util.*;

public class Main {

public static void main(String[] agmts){

Vector rules = Rule.readRules(agmts[0]);

Rule.writeRules(rules);

Term t1,t2;

// t1 = new Term("*(s(0),+(s(0),s(0)))");

t1 = Term.getTerm();

t2 = t1.norm(rules);

System.out.println(t2 + " is normal form of " + t1);

}

}


