

Title Page

Contents

Page 1 of 14

Go Back

Full Screen

Close

Quit

CS206 Lecture 20 Predicate Logic Semantics

G. Sivakumar

Computer Science Department
IIT Bombay
siva@iitb.ac.in
http://www.cse.iitb.ac.in/~siva

Fri, Feb 28, 2003

Plan for Lecture 20

- Domains, Interpretations, Models
- Examples

Title Page

Contents

→

Page 2 of 14

Go Back

Full Screen

Close

Quit

Semantics of FOL

Semantics (or interpretation) assigns truth values to wffs. An interpretation of a wff consists of

- A nonempty (countable) domain D.
- An assignment of values to each individuals (constants and free varibales), function and predicate symbols occurring in the formula as follows:
 - To each constant and free variable, some element of D is assigned.
 - To each n-ary function symbol, a mapping from $D^n \to D$ is assigned.
 - To each n-ary predicate symbol, an n-ary relation over D is defined.

Title Page

Contents

Page 3 of 14

Go Back

Full Screen

Close

Quit

Truth over the Domain

Given such an interpretation, a wff is assigned a truth value as follows.

- Atomic Forumlae $(P(t_1,...,t_n))$ is looked up in the interpretation.
- ullet If the subformulae G and H are assigned truth values then the truth values for the formulae $\neg G, (G \land H), (G \lor H), (G \to H), (G \leftrightarrow H)$ are evaluated using the truth tables (propositional logic) for these operators.
- ullet $\forall XG$ has the truth value true iff G is evaluated to true for each d in D.
- ullet $\exists XG$ has the truth value true iff G is evaluated to true for at least one d in D.

Title Page

Contents

Page 4 of 14

Go Back

Full Screen

Close

Quit

Interpretations

More than one interpretation is possible for a formula which arise out of different choices of D and different interpretation of symbols over a given D.

p(a)

- Interpretation: $D=\{1,2\}$. Assignment for a is 1. Assignment for p is p(1)=true and p(2)=false. Under this interpretation the given wff is true.
- ullet Another Interpretation: D and p as before, but a is 2. The the wff is false under this interpretation.

 $\forall X p(X) \text{ and } \exists X p(X)$:

- Under both the above interpretations, the first wff evaluates to false while the second one evaluates to true.
- Consider other interpretations: $D = \{0, 1, 2, \cdots\}, \ p(X) \text{ is the relation } X \text{ is odd.}$

Title Page

Contents

Page 5 of 14

Go Back

Full Screen

Close

Quit

Yet Another Example

 $\forall X p(X, f(X))$:

• An interpretation that satisfies this formula is:

Domain: $D = \{0, 1, 2, \dots, \}$,

Function: f(X) = x + 1,

Predicate: p(X,Y) is true iff $X \leq Y$.

Another interpretation (Herbrand Interpretation):

Domain: $D = \{a, f(a), f(f(a)), \dots, \}$

Function: $f(a) = f^1(a)$,

$$f(f^n(a)) = f^{n+1}(a).$$

Predicate: p(X, Y) is true iff

$$x = f^n(a), y = f^m(Y) \text{ and } n \le m.$$

Title Page

Contents

Page 6 of 14

Go Back

Full Screen

Close

Quit

Interesting Example

Consider the two formulae $\forall X \exists Y p(X,Y)$ and $\exists Y \forall X p(X,Y)$. We have a number of interpretations possible for these formulae:

• Consider the interpretation:

$$D = \{0, 1, 2, \ldots\}$$

$$p(X, Y) \text{ is } X \ge Y$$

Both the wff are true.

• Here is another interpretation:

$$D = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$$

$$p(X, Y) \text{ is as before}$$

The first wff is true while the second one is false!

Title Page

Contents

Page 7 of 14

Go Back

Full Screen

Close

Quit

Models

An interpretation of a wff is called its *model* if the wff is true under that interpretation. An interpretation of a wff is called its *counter-model* if the wff is false under that interpretation. A wff is *valid* provided it is true under *all* interpretations. Examples of valid formulae:

- 1. $\forall X p(X) \rightarrow \exists X p(X)$.
- 2. $\forall X p(X) \rightarrow p(a)$.
- 3. $\exists Y \forall X p(X,Y) \rightarrow \forall X \exists Y p(X,Y)$.
- 4. $\exists X p(X, X) \rightarrow \exists X \exists Y p(X, Y)$.
- 5. $(\forall X p(X) \lor \forall X q(X)) \to \forall X p(X) \lor q(X)$.
- 6. $\exists X(p(X) \land q(X)) \rightarrow \exists Xp(X) \land \exists Xq(X)$.
- 7. $(\exists X p(X) \to \forall X q(X)) \to \forall X (p(X) \to q(X))$.

Title Page

Contents

← →

→

Page 8 of 14

Go Back

Full Screen

Close

Quit

Examples of Invalid Formulae:

- 1. $\exists X p(X) \to \forall X p(X)$.
- 2. $p(a) \rightarrow \forall X p(X)$.
- 3. $\forall X \exists Y p(X,Y) \rightarrow \exists Y \forall X p(X,Y)$.
- 4. $\exists X \exists Y p(X,Y) \rightarrow \exists X p(X,X)$.
- 5. $\forall X(p(X) \lor q(X)) \to (\forall Xp(X) \lor \forall Xq(X))$.
- 6. $\exists X p(X) \land \exists X q(X) \rightarrow \exists X (p(X) \land q(X))$
- 7. $\forall X(p(X) \to q(X)) \to (\exists Xp(X) \to \forall Xq(X))$.

Title Page

Contents

→

Page 9 of 14

Go Back

Full Screen

Close

Quit

Satisfiability

• A wff is satisfiable provided it is true under some interpretation, i.e. there exists a model

Note that all valid wffs are satisfiable, while some invalid ones are satisfiable.

• A wff is a contradiction or unsatisfiable if and only if it is false under all interpretations.

Therefore a negation of valid formula is unsatisfiable.

Title Page

Contents

→

Page 10 of 14

Go Back

Full Screen

Close

Quit

Some Important Equivalences in FOL

- All PL equivalences hold in FOL.
- Duality of Quantifiers:

$$-\neg \forall X A(X) \leftrightarrow \exists X \neg A(X).$$

$$-\neg \exists X A(X) \leftrightarrow \forall X \neg A(X).$$

• Scope inclusion/exclusion rules: The following set of equivalences and their symmetric counterparts are all valid:

$$-\exists X A(X) \lor B \leftrightarrow \exists X (A(X) \lor B).$$

$$- \forall X A(X) \lor B \leftrightarrow \forall X (A(X) \lor B).$$

$$-\exists X A(X) \land B \leftrightarrow \exists X (A(X) \land B).$$

$$-\forall X A(X) \land B \leftrightarrow \forall X (A(X) \land B).$$

where X does not occur free in B.

Title Page

Contents

Page 11 of 14

Go Back

Full Screen

Close

Quit

Encoding World-Knowledge

Every man is mortal. Chanakya is a man. Therefore Chanakya is mortal.

Every IITian stays in the campus, and Ajay is an IITian.

Hence, Ajay stays in the campus.

5 is a prime number and it is odd.

Therefore, there exists an odd prime number.

- $\begin{array}{ccc} 1 & [\forall X (man(X) \rightarrow mortal(X)) \land man(Chanakya)] \\ & \rightarrow mortal(Chanakya). \end{array}$
- 2. $[\forall X(iitian(X) \rightarrow campusite(X)) \land iitian(A)]$ $\rightarrow campusite(A)$.
- 3. $prime(5) \wedge odd(5)$ $\rightarrow \exists X(prime(X) \wedge odd(X)).$

Title Page

Contents

Page 12 of 14

Go Back

Full Screen

Close

Quit

More Examples

• At least one hour is free.

 $\exists X freehour(X)$.

• A thing is a pen only if it writes and holds ink.

$$\forall X(write(X) \wedge ink(X) \rightarrow pen(X))$$

All that glitters is not gold

$$\neg(\forall Xglitter(X) \rightarrow gold(X))$$

(Compare with: $\forall X(glitter(X) \rightarrow \neg gold(X))$)

Alternatively: $\exists X(glitter(X) \land \neg gold(X))$

• For every positive number there is a smaller number. $\forall X \exists Y qt(X,Y)$

Title Page

Contents

→

Page 13 of 14

Go Back

Full Screen

Close

Quit

Validity of FOL formulae

The methods employed for determining validity of propositional formulae can not be directly extended.

- Truth table method of PL can not be extended as the truth table for FOL would require an infinite table!
- Normal Forms Method is also less effective since we can not have normal forms that can be syntactically checked to determine whether a wff is valid.

Normal forms are however, useful as they allow one to assume a fixed syntactic form for wffs. Two normal forms for FOL wffs are defined *Prenex Conjunctive Normal Form* and *Prenex Disjunctive Normal Form*.

Title Page

Contents

44 >>>

→

Page 14 of 14

Go Back

Full Screen

Close

Quit

Prenex Normal Forms

A wff is in prenex conjunctive normal form (PCNF) if

- ullet it is either T or F or
- it is of the form $Q_1x_1\cdots Q_nx_nM$, where each Q_ix_i is either $\forall x_i$ or $\exists x_i$ and M is a wff containing no quantifiers and is in conjunctive normal forms. $Q_1\cdots Q_n$ is called *prefix* and M is called the *matrix*.

Examples of PCNF

- $\bullet \ \forall X \forall Y (p(X,Y) \land q(Y)).$
- $\bullet \ \forall X \exists Y (\neg p(X,Y) \lor q(X,Y).$
- $\bullet \ \forall X \forall Y \exists Z ((\neg q(Y) \lor p(X,Y)) \land r(X,Z)).$

Exercise Design an algorithm for converting any wff to prenex normal form.