
Home Page
Title Page
Contents

JJ II

J I

Page 1 of 10
Go Back

Full Screen
Close
Quit

CS206 Lecture 2x
CTL Model Checking

G. Sivakumar
Computer Science Department

IIT Bombay
siva@iitb.ac.in

http://www.cse.iitb.ac.in/∼siva

Thu, Apr 10, 2003

Plan for Lecture 2x
• Reducing Number of Operators
• Fixpoint Computation
• Simple Algorithm

Home Page
Title Page
Contents

JJ II

J I

Page 2 of 10
Go Back

Full Screen
Close
Quit

Model Checking
• Input: Kripke structure M and CTL formula.
• Output: set of states where holds. (Can derive the desired yes/no
answer.)

• Idea: label graph with subformulae known to be true, starting with
smallest.

• Basically a fairly simple graph algorithm.
Note: M has �nite number of states.

Home Page
Title Page
Contents

JJ II

J I

Page 3 of 10
Go Back

Full Screen
Close
Quit

Example

In which states are the following true?
• EG c
• EG EF a

Home Page
Title Page
Contents

JJ II

J I

Page 4 of 10
Go Back

Full Screen
Close
Quit

Functionally Complete Subset
All CTL formulas can be converted to equivalent one involving only

0,¬,∧,AF,EU,EX

• 1 = ¬0

• ∨ = ...

• AXΦ = ¬EX¬Φ

• EGΦ = ...

• EFΦ = ...

• AGΦ = ...

• A(Φ
⋃

Ψ) = ...

Home Page
Title Page
Contents

JJ II

J I

Page 5 of 10
Go Back

Full Screen
Close
Quit

How to Model Check
Simplistic Algorithm explained in 2 di�erent ways. Given Kripke structure
M and CTL formula Φ.
• Recursively check the formula.
Check smallest subformula (atomic propositons), then slightly bigger
formula ... �nally full formula.
Main Data Structure: For every subformula f use the set Sat(f) to
denote the states in which f holds.

• Recursively label the states.
For every state s in the model, use the set Label(s) to denote the
subformales of Φ which hold in that state.

Home Page
Title Page
Contents

JJ II

J I

Page 6 of 10
Go Back

Full Screen
Close
Quit

Model checking CTL:

Explanation 1
How to check whether state s satis�es Φ?
• compute recursively the set Sat(Φ) of of states that satisfy Φ.
• check whether state s belongs to Sat(Φ)

Recursive computation
• Determine the sub-formulas of Φ.
• Compute Sat(p) for all atomic propositions p in Φ.
• Then check the smallest sub-formulas that contain each p

• Check the formulas that contain these sub-formulas.
• and so on....... until formula Φ is checked.

Home Page
Title Page
Contents

JJ II

J I

Page 7 of 10
Go Back

Full Screen
Close
Quit

Top-level Algorithm for

Method 1
• Sat(p) is the set of states labelled with atomic proposition p.
• Sat(Φ ∨ Ψ) is Sat(Φ) ∪ Sat(Ψ)

• Sat(¬Φ) is S − Sat(Φ) (complement)
• Sat(EXΦ) is the set of states that can directly move to Sat(Φ).
That is, s1 ∈ Sat(EXΦ) if s2 ∈ Sat(Φ) and from s1 we can go to s2

in 1-step in the reachability relation of M.
• EU (next slide)
• AF (homework)

Home Page
Title Page
Contents

JJ II

J I

Page 8 of 10
Go Back

Full Screen
Close
Quit

Checking Until Formula
Example of Fixpoint computation (you will see this often in CS later!)
Let f = E(Φ

⋃
Ψ). Sat(f) is computed as follows.

• Sat0(f) = Sat(Ψ)

• Sat1(f) = Sat0(f) ∪ {Φ−states from where we can move to Sat0(f)}
That is, s1 ∈ Sat1(f) if s1 ∈ Sat0(f) or Φ holds in s1 and there is
s2 ∈ Sat0(f) and from s1 we can reach s2 in 1-step.

• ...
• Sati+1(f) = Sati(f) ∪ {Φ−states from where we can move to

Sati(f)}

• ...
• until Sati+1(f) = Sati(f) �xpoint!

Home Page
Title Page
Contents

JJ II

J I

Page 9 of 10
Go Back

Full Screen
Close
Quit

Example
Compute Sat(E(yellow

⋃
blue))

Home Page
Title Page
Contents

JJ II

J I

Page 10 of 10
Go Back

Full Screen
Close
Quit

Method 2: Top-level

Algorithm
ModelCheck(Φ ,M):
• Translate Φ so it mentions only 0,¬, ,AF,EU,EX and variables.
• For each state s of M, initialize Label(s) to be the empty set.
Label(s) is the set of subformulae of known to be true in state s.

• Let F be a list of all subformulae of Φ sorted in nondecreasing order
of size.

• For each f ∈ F , call the procedure addLabel(f).
• Return the set of all s such that Φ ∈ Label(s).

How to addLabel? (homework).

