CS200 Lecture 2x
CTL Model Checking

G. Sivakumar
Computer Science Department
[IT Bombay
siva@iitb.ac.in
http://www.cse.iitb.ac.in/~siva

Thu, Apr 10, 2003

Plan for Lecture 2x
e Reducing Number of Operators
e Fixpoint Computation

e Simple Algorithm

iy

Contents

) AN gy
"'\-

‘ -
=)
=

&
3
I I =

Model Checking

e Input: Kripke structure M and CTL formula.

e Output: set of states where holds. (Can derive the desired yes/no
answer.)

e |dea: label graph with subformulae known to be true, starting with
smallest.

e Basically a fairly simple graph algorithm.

Note: M has finite number of states.

Example

State Transition Graph or
Kripke Madel

Infinite Computation Tree

(Unwind State Graph to obtain Infinite Tree)

In which states are the following true?
e EG c
e EG EF a

Functionally Complete Subset

All CTL formulas can be converted to equivalent one involving only

0,-, A, AF, EU,EX

o1l =-0

oV = .

e AXP = -EX-P
e EGP = ..

e EF® = ...

e AGP = ...

e AP JP)=..

How to Model Check

Simplistic Algorithm explained in 2 different ways. Given Kripke structure
M and CTL formula ®.

Check smallest subformula (atomic propositons), then slightly bigger

[romarsge |
 reeree | e Recursively check the formula.
[comems |

formula ... finally full formula.

KR Main Data Struct.ure: For every subformula f use the set Sat(f) to
denote the states in which f holds.

R e Recursively label the states.

For every state s in the model, use the set Label(s) to denote the
subformales of ® which hold in that state.

Model checking CTL:
Explanation 1

How to check whether state s satisfies 7
e compute recursively the set Sat(®) of of states that satisfy .
e check whether state s belongs to Sat(®P)
Recursive computation
e Determine the sub-formulas of .
e Compute Sat(p) for all atomic propositions p in .
e Then check the smallest sub-formulas that contain each p
e Check the formulas that contain these sub-formulas.

e and soon....... until formula ® is checked.

Top-level Algorithm for
Method 1

[romarsge |

EE e Sat(p) is the set of states labelled with atomic proposition p.
o Sat(®V V) is Sat(P) U Sat(V)

e o Sat(—P) is S — Sat(P) (complement)

o Sat(EX®) is the set of states that can directly move to Sat(®).

That is, s; € Sat(EX®) if s, € Sat(P) and from s; we can go to sy
in 1-step in the reachability relation of M.

e EU (next slide)
e AF (homework)

Checking Until Formula

Example of Fixpoint computation (you will see this often in CS later!)
Let f =E(P(J V). Sat(f) is computed as follows.

o Sat!(f) = Sat’(f) U {®—states from where we can move to Sat’(f)}

T
| riepae | e Sat’(f) = Sat(\V)
e That is, s1 € Sat!(f) if s; € Sat’(f) or ® holds in s; and there is

| »] sy € Sat’(f) and from s; we can reach sy in 1-step.
o
L | .
o Sat™™(f) = Sat'(f) U {d—states from where we can move to
Sat'(f)}
e ..

e until Sat'™(f) = Sat'(f) fixpoint!

Example
Compute Sat(E(yellow] blue))

__Home poge_|

_ Titepoge | O 1 ’ -
first iteration Oﬁ©<—0
second iteration OﬁO%O
third iteration .ﬁO(—Q

_Pase oo |
_ Godack |
[rrsaen | fourth iteration .ﬁO@Q done!
_ e |
o |

Method 2: Top-level
Algorithm

ModelCheck(® ,M):
e Translate @ so it mentions only 0, -, , AF, EU, EX and variables.

e For each state s of M, initialize Label(s) to be the empty set.

Label(s) is the set of subformulae of known to be true in state s.

e Let F' be a list of all subformulae of & sorted in nondecreasing order
of size.

e For each f € F, call the procedure addLabel(f).

e Return the set of all s such that ® € Label(s).

How to addLabel? (homework).

