
System Validation
Lecture 4: Linear Temporal Logic

Joost-Pieter Katoen

Formal Methods and Tools Group

E-mail: katoen@cs.utwente.nl

URL: fmt.cs.utwente.nl/courses/systemvalidation/

January 17, 2003

System Validation – Linear Temporal Logic

LTL Formal Methods and Tools

Overview of lecture
� Why temporal logic?

� Propositional linear temporal logic

– Syntax and semantics
– Some formulas express the same

� Specifying properties in PLTL

� Model-checking PLTL in a nutshell

� How to model-check PLTL with SPIN?

� Practical use of PLTL

System Validation – Linear Temporal Logic 1

LTL Formal Methods and Tools

The model-checking approach

87

satisfied

insufficient
memory

� � ��� � � �

counterexample
Simulation location

error

system

violated +

Model Checking

requirements

Formalizing Modeling

system model
property

specification

up to 10 - 10 states

System Validation – Linear Temporal Logic 2

LTL Formal Methods and Tools

Properties of a mutual exclusion protocol

Typical properties of a mutual exclusion protocol

� it is never the case that two (or more) processes occupy their critical
section at the same time

guarantee of mutual exclusion

� whenever a process wants to enter its critical section, it eventually
will do so

no unbounded overtaking (absence of individual starvation)

How to specify these properties in an unambiguous and precise way?

System Validation – Linear Temporal Logic 3

LTL Formal Methods and Tools

Properties of a traffic light

Typical properties of a traffic light:

� once red, the light cannot become immediately green

� eventually the light will be green again

� once red, the light becomes green after being yellow for some time
between being red and being green

How to specify these properties in an unambiguous and precise way?

using temporal logic

System Validation – Linear Temporal Logic 4

LTL Formal Methods and Tools

The need for temporal logic

How are sequential computer programs formally verified?

� property specification in propositional/predicate logic

� set of (compositional) proof rules (e.g., Hoare triples)

Example proof rule for iteration in sequential programs:

� � � � ��� � � �

� � ��� 	
� � � � � � � � � � � �
fine point: partial versus total correctness

how to find invariants like � ?

System Validation – Linear Temporal Logic 5

LTL Formal Methods and Tools

The need for temporal logic (cont’d)

� � � � ��� � and � ��� ��� � � � �

� � � ��� ��� par� � � � � � �

� due to “interaction” of� and� this rule is not valid in general

� parallelism inherently leads to non-determinism:

� �	� �
 � par � �	� � versus � �	� �
 � � � �� �
 � � par � �	� �

� not only begin- and end-states are of importance, but also what
happens during the computation

pre- and postconditions – as for sequential programs – are insufficient
� � use temporal logic!

System Validation – Linear Temporal Logic 6

LTL Formal Methods and Tools

Temporal and modal logics

� modal logics were originally developed by philosophers to study
different modes of truth (“necessarily � ” or “possibly � ”)

� temporal logic (TL) is a special kind of modal logic where truth values
of assertions vary over time

� typical modalities (temporal operators) are:

– “sometime � ” is true if property � holds at some future moment
– “always � ” is true if property � holds at all future moments

� TL is often used to specify and verify reactive systems, i.e. systems
that continuously interact with the environment (Pnueli, 1977)

System Validation – Linear Temporal Logic 7

LTL Formal Methods and Tools

Overview of lecture
� Why temporal logic?

� Propositional linear temporal logic

– Syntax and semantics
– Some formulas express the same

� Specifying properties in PLTL

� Model-checking PLTL in a nutshell

� How to model-check PLTL with SPIN?

� Practical use of PLTL

System Validation – Linear Temporal Logic 8

LTL Formal Methods and Tools

Atomic propositions

Atomic propositions – the basic elements of a temporal logic – are
boolean expressions �� �� � over

� data variables (integers, lists, sets, etc.) and control variables
(locations in programs),

� constants (the integers 0,1,2, � � � , the empty list [], the empty set � ,
etc.)

� predicate symbols (like � and � over integers, null over lists, and

� and 	 over sets, etc.)

Atomic propositions are the most elementary properties one can state

System Validation – Linear Temporal Logic 9

LTL Formal Methods and Tools

Syntax of linear temporal logic

Propositional Linear Temporal Logic (PLTL) is the smallest set of
formulas generated by the rules:

1. each atomic proposition � is a formula

2. if � and� are formulas, then � � and � � � are formulas

3. if � is a formula, then � � (“next”) is a formula

4. if � and� are formulas, then � � � (“until”) is a formula
� is sometimes denoted �

System Validation – Linear Temporal Logic 10

LTL Formal Methods and Tools

Derived operators

� � � � � � � � � � �

� � � � � � � �

� � � � � � � � � � � � �

true � � � � �
false � � true

� � � true � �

� � � � � � �

� is called “future” (or “eventually”) and is sometimes denoted �

� is called “globally” (or “always”) and is sometimes denoted �
System Validation – Linear Temporal Logic 11

LTL Formal Methods and Tools

Some example PLTL formulas

let �� be the set of atomic propositions over variable � , boolean
operators � , � and � , and function �
 � for constant �

� the following formulas are legal PLTL-formulas over � � :

– � �
 � � � � � � � � �� �
– � �
 � � � � � �

– � � � � � � � � � � �

– � � � � � � � � � � � � � � �

� the following formulas are illegal PLTL-formulas over � � :

– � �
 � � � � � � ��� � �� �

– � � � � � � � � 	 �

System Validation – Linear Temporal Logic 12

LTL Formal Methods and Tools

Traffic light properties

� once red, the light cannot become green immediately:

� �� �� � � � � � � �� �

� the green light becomes green eventually: � � � � ��

� once red, the light becomes green eventually: � �� �� � � � � � �� �

� once red, the light always becomes green eventually after being
yellow for some time inbetween:

� � �� � � �� � � �� � �	 � � � � � �� �

System Validation – Linear Temporal Logic 13

LTL Formal Methods and Tools

Interpretation of PLTL

Formal interpretation of PLTL-formulas is defined in terms of a Kripke
structure � � � ��� ��� ��� �� �� � where

� � is a countable set of states,

�� 	 � is a set of initial states,

�� 	 � � � is a transition relation with 	
 � � � ��
 � � � �
 �
 � � �� �

�� �� �� �� � ���� is an interpretation function on� .

� �� ��
 � is the set of the atomic propositions� �� ��
 � that are valid in

System Validation – Linear Temporal Logic 14

LTL Formal Methods and Tools

A triple modular redundant system

� 3 processors and a single voter:

– processors run same program; voter takes a majority vote
– each component (processor and voter) is failure-prone
– there is a single repairman for repairing processors and voter

Proc 1

Proc 2

Proc 3

input output

vote

vote

vote
Voter

� Modelling assumptions:

– if voter fails, entire system goes down

– after voter-repair, system starts “as new”

– state � � � processors � � voters �

System Validation – Linear Temporal Logic 15

LTL Formal Methods and Tools

Example Kripke structure

� � ���

� � ���

� � ���

� � ���

� � � �

up �up � up�up �

down

System Validation – Linear Temporal Logic 16

LTL Formal Methods and Tools

Semantics of PLTL (cont’d)
Defined by a relation �� such that:

� �� � if and only if formula � holds in path � of structure �

where a path in � is an infinite sequence of states
 �
 �
 � � � � such that

 � �� and
 ��
 � � � � �� for all � � � . We have:

� �� � iff � �� �� �� � � � 	 �

� �� � � iff not � �� � �

� �� � � � iff � �� � � or � �� � �

� �� � � iff � �
�� �

� �� � � � iff�
 � � � � �� �� � � 	 � � � �
 � ��� �� � � �

where � � is the suffix of � obtained by removing its first � states, i.e.,

� � �
 �
 � � �
 � � � � � � .

System Validation – Linear Temporal Logic 17

LTL Formal Methods and Tools

Example of semantics of PLTL

� �� �� � � � � � �� � � � ��
 � � �� � �

� �� � � ?

� �� � � ?

� �� � �
 ?

� �� � � � �
 � ?

System Validation – Linear Temporal Logic 18

LTL Formal Methods and Tools

Model checking, satisfiability and validity

� �� � if and only if all paths (that start in some initial state) satisfy �

The model-checking problem is: given a Kripke structure � ,
and a property � , do we have � �� � ?

� Satisfiability problem: given a property � , does there exist a model

� such that � �� � ?

– � � � � and � � � � � � are satisfiable

� Validity problem: given a property � , do we have for all models �

that � �� � ?

– � � � � � � � � � � � � is valid
– � � � � and � � � � � � are not valid

System Validation – Linear Temporal Logic 19

LTL Formal Methods and Tools

Some important validities for PLTL

Duality rules: � � � � � � �

� � � � � � �

� � � � � � �

Idempotency rules: � � � � � �

� � � � � �

� � � � � � � � � �

Absorption rules: � � � � � � � �

� � � � � � � �

Commutation rule: � � � � � � � � � � � � �

Expansion rules: � � � � � � � � � � � � � �

� � � � � � � �

� � � � � � � �

System Validation – Linear Temporal Logic 20

LTL Formal Methods and Tools

Overview of lecture
� Why temporal logic?

� Propositional linear temporal logic

– Syntax and semantics
– Some formulas express the same

� Specifying properties in PLTL

� Model-checking PLTL in a nutshell

� How to model-check PLTL with SPIN?

� Practical use of PLTL

System Validation – Linear Temporal Logic 21

LTL Formal Methods and Tools

Specifying properties in PLTL

channelSender � Receiver �

�� �� � � � ��

atomic propositions: variables � � � � � � � 	
 � and� � �� and predicate �

� A message cannot be in both buffers at the same time

� � � � � � 	
 � � � �� � �� �

� The channel does not lose any messages

� � � � � 	
 � � � � �� � �� � �
what if we would replace � by � � ?

System Validation – Linear Temporal Logic 22

LTL Formal Methods and Tools

Specifying properties in PLTL (cont’d)

� The channel does not spontaneously generate messages
� � ��� � �� � � � � � � 	
 � � �

� The channel is order-preserving, i.e. messages are received in the
same order as they were sent

� � � � � 	
 � � � � �� � � 	
 � � � � � � � � 	
 � �

� � � �� � �� � � � ��� � �� � � � � �� � �� � �

�

can we replace ��� �� �� �� � � � � �� � �� �� � � by � � � �� � �� �� � � ?

System Validation – Linear Temporal Logic 23

LTL Formal Methods and Tools

Variants of Linear Temporal Logic

Variants can be constructed from PLTL by, for instance:

� allowing finite paths besides infinite paths

� adding past temporal operators, like

– � � is true if � holds in the previous state (if any)
– � � is true if � holds in all previous states

� adding real-time (i.e., continuous-time) operators, like

– ��� � � is true if � holds in some future state within � time units

� adding first-order (� and 	 over logical variables) or higher-order
constructs

System Validation – Linear Temporal Logic 24

LTL Formal Methods and Tools

Overview of lecture
� Why temporal logic?

� Propositional linear temporal logic

– Syntax and semantics
– Some formulas express the same

� Specifying properties in PLTL

� Model-checking PLTL in a nutshell

� How to model-check PLTL with SPIN?

� Practical use of PLTL

System Validation – Linear Temporal Logic 25

LTL Formal Methods and Tools

Conversion of PLTL into automata: theory

A Büchi automaton for PLTL-formulas is a

� a finite-state automaton with transitions labelled with atomic
propositions (and negations thereof)

� accept states that should be visited infinitely often by a legal
computation

Theorem: (Wolper, Vardi & Sistla, 1983)

For any PLTL-formula � a “corresponding” Büchi automaton
can be constructed with at most ��� � � states

an efficient algorithm for this conversion is implemented in SPIN

System Validation – Linear Temporal Logic 26

LTL Formal Methods and Tools

Conversion of PLTL into automata: examples

true� � �

� �

� � � � � �

�
�

�

true

� � � � �

� � � � �

true� � � �

�

System Validation – Linear Temporal Logic 27

LTL Formal Methods and Tools

Overview of lecture
� Why temporal logic?

� Propositional linear temporal logic

– Syntax and semantics
– Some formulas express the same

� Specifying properties in PLTL

� Model-checking PLTL in a nutshell

� How to model-check PLTL with SPIN?

� Practical use of PLTL

System Validation – Linear Temporal Logic 28

LTL Formal Methods and Tools

PLTL syntax in SPIN

Syntax of PLTL in SPIN property manager:

p ::= boolean_expression | proctype[pid]@label

H ::= p /* atomic proposition */
| !H /* negation */
| H && H /* conjunction */
| H || H /* disjunction */
| H -> H /* implication */
| <>H /* eventually */
| []H /* always */
| H U H /* until */

There is no next operator (�) in SPIN

System Validation – Linear Temporal Logic 29

LTL Formal Methods and Tools

Generating Büchi automata with SPIN

� SPIN automatically converts PLTL-formula � into an automaton for

� �
� this is called a never claim; for instance for � = ![] <> p:

never { /* ([] <> p) */
T0_init:
if
:: ((p)) -> goto accept_S9
:: (1) -> goto T0_init
fi;
accept_S9:
if
:: (1) -> goto T0_init
fi;
}

p

T0 init accept S9

System Validation – Linear Temporal Logic 30

LTL Formal Methods and Tools

How does SPIN model check PLTL-formulas?
PROMELA specification
(= “possible behaviour”)

PLTL-formula �

(= “desired behaviour”)

negated PLTL-formula � �

(= “undesired behaviour”)

Büchi automaton

(synchronous) product automaton
(= “possible and undesired behaviour”)

is automaton empty?
yes no

Büchi automaton
(= never claim)

property satisfied property violated

System Validation – Linear Temporal Logic 31

LTL Formal Methods and Tools

Overview of lecture
� Why temporal logic?

� Propositional linear temporal logic

– Syntax and semantics
– Some formulas express the same

� Specifying properties in PLTL

� Model-checking PLTL in a nutshell

� How to model-check PLTL with SPIN?

� Practical use of PLTL

System Validation – Linear Temporal Logic 32

LTL Formal Methods and Tools

Classification of temporal properties
Three main categories of properties: (Lamport, 1977)

1. Safety properties state “nothing bad can happen”

there are never two (or more) processes in their critical section at the same time

2. Liveness properties state “something good will eventually happen”

if a process wants to enter its critical section, it eventually will do so

3. Fairness properties state, for instance, “every (potentially repeating)
request is eventually granted”

if I continuously buy a lottery ticket, I eventually will win a prize

System Validation – Linear Temporal Logic 33

LTL Formal Methods and Tools

A non-standard traffic light

System Validation – Linear Temporal Logic 34

LTL Formal Methods and Tools

Classification of example properties

� Safety properties:

– once red, the light cannot become green immediately

� �� �� � � � � � � �� �

� Liveness properties:

– once red, the light becomes green eventually: � � �� � � � � � �� �

� Fairness properties:

– the light is infinitely often green: � � � � � ��

– if the light is red infinitely often, it should be yellow infinitely often

� � � �� � � � � �� � �	

System Validation – Linear Temporal Logic 35

LTL Formal Methods and Tools

Practical properties in PLTL

� Reachability (“there exists a path such that ... is reached”)

– negated reachability � � �

– conditional reachability � � � �

– reachability from any state not expressible

� Safety (“something bad never happens”)

– simple safety � � �

– conditional safety � � � � � � �

� Liveness � � � � � �

� Fairness � � � and others

System Validation – Linear Temporal Logic 36

LTL Formal Methods and Tools

How to use PLTL in practice?

Capture commonly-used types of formulas in specification patterns

� Specification pattern: generalized description of a commonly
occurring requirement on the permissable paths in a model

– parameterizable: only state-formulas to be instantiated
– high-level: no detailed knowledge of TL is required
– formalism-independent: by mappings onto TL at hand

� Scope of a pattern: the extent of the computation over which the
pattern must hold, such as

– global: the entire computation
– after: the computation after a given state
– between: any part of the computation from one state to another

System Validation – Linear Temporal Logic 37

LTL Formal Methods and Tools

Most commonly used specification patterns for PLTL

Investigation of 555 requirement specifications reveals that the following
patterns are most widely used for � � � and� state-formulas: (Dwyer et
al, 1998)

pattern scope PLTL-formula frequency

response global � ��� � � � � 43.4 %
universality global � � 19.8 %
absence global � � � 7.4 %
precedence global � � � � � � � � 4.5 %
absence between � � �� � � � � � � �

� � � � � � � � 3.2 %
absence after � � � � � � � � 2.1 %
existence global � � 2.1 %

� 80 %

more info at: www.cis.ksu.edu/santos/spec-patterns/

System Validation – Linear Temporal Logic 38

