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This lecture in brief

1. Modal logic: time and knowledge

2. Basic systems of modal logic

3. Possible worlds semantics

4. Logics of linear time

5. Logics of branching time

6. Temporal logic and verification



Modal logic: time and knowledge

Propositional logic is decidable but too restrictive. First order

and higher order logics have unlimited expressive power but are

not decidable. Modal logic appeared as an attempt to extend

propositional logic by additional connectives preserving certain

nice features like decidability.

Minimal format: propositional connectives plus unary connective

“modality” 2. Intended readings of new atoms 2F are
1. Epistemic - existential: “F is known”, “F is provable”, etc,
2. Temporal - universal: “F holds in all possible situations”,
“in the future F will always hold”, etc.

Usually preserves decidability.



History and Applications

McKinsey-Tarski (1948): topological semantics 2F = interior(F ), pro-

vides a mathematical model for intuitionism, logic of approximate measure-

ments, leads to logics for dynamic systems, etc.

Kripke (1959): possible worlds à la Leibniz, by far the most widely used

semantics.

Hoare (1969): partial correctness statements A{G}B =“if A holds before

the execution of G then B holds afterward”, a classic of program verification.

Recently Tony Hoare was knighted by the British Queen.



Pratt (1976): logic of programs, [C]ϕ = ϕ holds while C is executed,

each [C] is an S4-modality. Kripke style semantics where possible worlds are

machine states. Stanford University Network = (SUN).

Pnueli (1977): branching temporal logic = logic of concurrency. The

language of verification and model checking. Turing award in CS.

Logic of Knowledge: a core AI topic, KA(ϕ) = “agent A knows ϕ”,

multiple modalities.

Joe Halpern (1990s): Common knowledge operator cannot be expressed

via individual knowledge operators. Problem: build a logic of knowledge that

distinguishes hard and easy problems. Prime factorization example.



Basic systems of modal logic

System K:
A1. Propositional axioms and rules
A2. 2(F⇒G)⇒(2F⇒2G) (distribution)

Nec. Necessitation rule:
` F

` 2F

System K4 is K +
A3. 2F ⇒ 22F (positive introspection/transitivity)

System S4 is K4 +
A4. 2F ⇒ F (reflexivity)

System S5 is S4 +
A5. ¬2F ⇒ 2(¬2F ) (negative introspection)



Some of derivations in K (hence in all other modal logics).

Theorem: 2 and ∧ commute

A⇒(B⇒A ∧B) A ∧B⇒A
2(A⇒(B⇒A ∧B)) 2(A ∧B⇒A)
2A⇒2(B⇒A ∧B) 2(A ∧B)⇒2A
2A⇒(2B⇒2(A ∧B)) 2(A ∧B)⇒2B
(2A ∧ 2B)⇒2(A ∧B) 2(A ∧B)⇒(2A ∧ 2B)

Theorem: 2 factors out through ∨:

A⇒A ∨B But not 2(A ∨B)⇒(2A ∨ 2B)!
2(A⇒A ∨B) Consider B to be ¬A. Whatever
2A⇒2(A ∨B) intended reading of modality you
2B⇒2(A ∨B) take 2(A ∨ ¬A)⇒(2A ∨ 2¬A)
(2A ∨ 2B)⇒2(A ∨B) cannot be possibly true.



Modality dual to 2: 3F ≡ ¬2¬F .

Intended semantics is derivative from the one for 2F :

if 2F denotes “F holds in all possible situations”,

then 3F stands for “F holds in at least one possible situation”

(the latter has been usually described as 2F denotes “F is nec-

essary” and 3F stands for “F is possible”)

Exercise: S4 ` A ⇒ 3A (thus S4 ` 2A ⇒ 3A).

Indeed: S4 ` 2¬A ⇒ ¬A, S4 ` ¬¬A ⇒ ¬2¬A, S4 ` A ⇒ ¬2¬A.



In many respects modal logics behave like normal logical sys-

tems. In particular, they are closed under substitution:

If Γ(p) ` F (p) then Γ(p/A) ` F (p/A) for any A

Modal logics admit equivalent substitution:

For L=K, K4, S4, S5, if L ` A ⇔ B then L ` F (p/A)⇔ F (p/B)

for any formula F (p)

NOTE: Deduction Theorem fails for L=K, K4, S4, S5. In-

deed, in all of those logics A ` 2A, by Necessitation, however,

none of them derives A ⇒ 2A. To prove that we need to de-

velop some sort of negative test for L, for example, some sort

of formal semantics true/false in a certain class of models along

with a corresponding soundness theorem. Then by showing that

F is false we can establish that F is not derivable.



One more example:

Derivation in K4, S4, S5 that F ⇒ 2F holds not only for F ≡ 2A

(transitivity axiom), but for F ≡ 2A ∨ 2B as well.

2A⇒2A ∨ 2B
2(2A⇒2A ∨ 2B)
2A⇒22A
22A⇒2(2A∨2B)
2A⇒2(2∨2B)
2B⇒2A ∨ 2B
2(2B⇒2A ∨ 2B)
2B⇒22B
22B⇒2(2A∨2B)
2B⇒2(2A∨2B)
2A∨2B⇒2(2A∨2B)



Possible Worlds Semantics by Saul Kripke.
Classical logic, propositional and quantified alike, gives a static

picture of the world. A classical interpretation (model) is an

assignment of truth values to atoms of the language. Modal

logic has a striking ability to capture adequately a very natu-

ral semantics of “possible worlds” which can be traced back to

Leibniz. The possible worlds universe consists of a collection of

classical models W connected by a binary accessibility relation

R(a, b) “world b is accessible from world a”. In other worlds,

the possible worlds constitute an ordered graph, not necessarily

finite. Whereas classical connectives operate within individual

worlds (i.e. nodes in W ), modality reaches out to all the worlds

accessible from a given one (possible worlds):

2F holds in a iff F holds in all b’s accessible from a.
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Model Kripke is a triple K = (W, R, |=),

where W is a nonempty set (elements of

which are called “possible worlds”), R a

binary relation on W , and |= a truth as-

signment having form: “world|=formula”

such that each propositional letter gets

some truth value in any world from W .

We assume also that for any x ∈ W both

x |= true and x 6|= false.

The definition of x |= F (read as a formula F is true in a world

x, or x forces F ) goes by induction on F :

x |= A ∧B iff “x |= A and x |= B”

x |= A ∨B iff “x |= A or x |= B”

x |= ¬A iff “x 6|= A”

x |= 2A iff “y |= A for all y such that R(x, y)”



By default, we assume that A ⇒ B stands for ¬A ∨ B, thus im-

posing the classical truth tables on boolean connectives at every

given node. From the definition it is clear that a Kripke model is

a collection of classical models connected by some sort of binary

“accessibility” relation.

Modality 2 is the only connective able to reach out to other

possible worlds, i.e. nodes of the model accessible from a given

one.

We may regard 2F as a sort of restricted universal quantifier

“for all possible worlds F holds”. It turns out that such limited

quantification enables us to express some important features like

time and process termination without compromising the decid-

ability of the propositional logic.

3F holds in x iff F holds in some y accessible from x.



Example

Consider a three-element “V-shaped” model with W = {0,1,2}

given by an oriented graph below. According to this graph,

R(0,1), R(0,2), and neither of R(1,2), R(2,1), R(1,0), R(2,0),

R(0,0), R(1,1), R(2,2) holds.

Notational convention: we label the nodes

with propositional variables true at a given

node. By default, all variables not listed

next to a node are assumed false at this

node. In particular, 1 |= p, 2 |= q, 1 6|= q,

2 6|= p, 0 6|= p, 0 6|= q, and all other variables

are false at all nodes.
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Question: for each of the formulas 2p, 2q, 2(p ∧ q), 2p ∧ 2q,

2(p ∨ q), 2p ∨ 2q, list the nodes where this formula is true.



Answer:

2p is true at 1 and 2, but not at 0. Indeed,

the set of accessible worlds for either 1 or 2 is

empty, thus FOR ALL worlds accessible from

each of them p holds. 2p is false at 0, since

p fails at 2 which is accessible from 0.

Likewise, 2q holds at 1 and 2, but not in 0.
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Formula p ∧ q is false at every node. Formula 2(p ∧ q) is true at

1 and 2, but not at 0, so do 2p ∧ 2q and 2p ∨ 2q.

Formula p ∨ q is true at 1 and 2, but not at 0. Formula 2(p ∨ q)

is true at every node. Indeed, it is true at 1 and 2 by trivial

reasons (above), hence it also true at 0, since p ∨ q is true at

every possible world for it.

Note, that 0 6|= 2(p ∨ q) ⇒ (2p ∨ 2q)!. Hence we have found a

model where this formula fails.



Truth value of a modal formula very much depends upon specific

details of accessibility relation.

For example, consider the same model as

above, but with all nodes made reflexive, i.e.

R(0,0), R(1,1), and R(2,2) (we denote re-

flexive worlds by “circled” nodes, as on the

picture). The same formulas now have quite

a different meaning.
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In particular, 2p is true at 1, but not at 0 and 2. Likewise, 2p is

true at 2, but not at 0 and 1.

It turned out that each of the modal logics under consideration is

complete with respect to a corresponding class of Kripke mod-

els which can be characterized by the property of accessibility

relation only.



Definition. A formula F is true in a model K (notation: K |= F )

if F holds at every node of K. A formula F is valid (in a given

class of models) if it is true in every model (of this class).

Consolidated Soundness Theorem

• If K ` F then F is valid in all models.

• If K4 ` F then F is valid in all transitive models.

• If S4 ` F then F is valid in all transitive reflexive models.

• If S5 ` F then F is valid in all transitive reflexive symmetric

models .

Proof. A pretty straightforward induction on the length of

derivation in a given logic. We first prove that axioms are true in

every model. Then we check that rules when applied to formulas

true in all models (of a given class) produce a formula true in

every such model as well.



Soundness of K.

A1. Propositional axioms

are true at every node since each node is a classical model.

A2. 2(F⇒G)⇒(2F⇒2G) (distribution)

We have to prove that A2 is true at every node x of every model. Suppose

x |= 2(F ⇒ G) and x |= 2F , then for every y accessible from x both F ⇒ G

and F hold, hence G does. Since G holds for every y accessible from x, the

formula 2G holds at x.

Modus Ponens:
F ⇒ G, F

.
G

Obviously holds at each node.

Nec.:
` F

` 2F

By contrapositive, suppose there is a model K,
where 2F is false at some node x. Then there
should be a node y (accessible from x), where F is
false. Therefore, F is false in K.



Soundness of K4

A3. 2F ⇒ 22F (positive introspection/transitivity)

Suppose x |= 2F . In order to establish that x |= 22F consider

any y accessible from x and check that y |= 2F . To do this, we

have to consider any z accessible from y and prove that z |= F .

The latter holds since z is also accessible from x (transitivity!),

and thus x |= 2F yields z |= F .

Soundness of S4

A4. 2F ⇒ F (reflexivity)

Suppose x |= 2F . Then y |= F for all y accessible from x,

in particular, for y = x. Thus x |= F .



Soundness of S5

A5. ¬2F ⇒ 2(¬2F ) (negative introspection)

Suppose x |= ¬2F , then y 6|= F for some y accessible from x. In

order to establish that x |= 2¬2F consider any z accessible from

x and check that z |= ¬2F . Since accessibility here is symmetric,

x is accessible from z. By transitivity, y is also accessible from z.

Thus we have found a node y accessible from z and such that

y 6|= F . Thus z |= ¬2F .



To show that p ⇒ 2p is not derivable in modal logic, it now

suffices to build a countermodel K = (W, R, |=) for this formula.

Consider W = {0,1} and let accessibility be a complete graph on

W , i.e. R(0,0), R(0,1), R(1,0), R(1,1). Put 0 |= p and 1 6|= p.

Clearly, K is a legitimate S5 model, since R is an equivalence

relation on W .

Moreover, 0 |= p, but 0 6|= 2p, since 1 6|= p and 1 is accessi-

ble from 0. Therefore, 0 6|= p ⇒ 2p.

By the soundness theorem, S5 6` p ⇒ 2p, thus none of the other

logics K, K4, S4 does.



Consolidated Completeness Theorem

• K ` F iff F is valid in all models.

• K4 ` F iff F is valid in all transitive models.

• S4 ` F iff F is valid in all transitive reflexive models.

• S5 ` F iff F is valid in all transitive reflexive symmetric models .

Proof. By the maximal consistent sets construction (sometimes

called canonical model. A bit too long for our course.

Exercise. Prove that all logics K, K4, S4, S5 are distinct. Hint:

show that each next axiom is not derivable in the previous sys-

tem, use models.



Temporal Logic - one of the most important brands of modal
logic. We begin with the logic of linear time.

Linear Timeline is the set of natural numbers 0,1,2,3, . . ., rep-

resenting e.g. sequential computational process. It may also be

regarded as a Kripke model where R(x, y) is x ≤ y.

Propositional Linear Temporal Logic (PLTL) has the follow-

ing temporal connectives: F, G, X, and U

Gp is always p, nothing but a new name for 2p

Fp is sometime p, a dual to Gp, i.e. an analogue of 3p

Xp is nexttime p. Holds at n iff p holds at n+1

pUq is p until q. Holds at n iff q does eventually hold at some

m ≥ n and p holds everywhere at n or later prior to q.



Dependencies, definable connectives:

Fp abbreviates (true Up) (Exercise!)

Gp is dual to Fp

F∞p - infinitely often p, abbreviates GFp

G∞p - almost everywhere p, abbreviates FGp

Definition. PLTL is defined not as a deductive system, but

rather as a set of tautologies in a given language. This logic is

decidable, and can be axiomatized by a finite set of schemes.

Examples: p ⇒ Fq and G(p ⇒ Fq) are satisfiable, but not valid.

G(p ⇒ Fq)⇒ (p ⇒ Fq) is valid, but its converse is only satisfiable.

p ∧ G(p ⇒ Xp)⇒ Gp is valid, and called a temporal formulation of

mathematical induction.



Logics of branching time - model of concurrency

Timeline a tree like discrete structure. Path quantifiers

A - “for all future paths”; E - “for some future paths. Examples:

AF∞p = “along each future path p happens infinitely often”.

EG∞p = “along some future path p happens almost everywhere”.

Reactive systems: operating systems, network communication

protocols, air traffic control systems, etc. Normal behavior - ar-

bitrary long, possible nonterminating computations.

Fairness: each process is executed infinitely often - F∞

Safety property: nothing bad happens - G

Liveness property: something good will happen - F, F∞, and G∞


